Polycomb group genes are targets of aberrant DNA methylation in renal cell carcinoma

Department of Pathology, Brown University, Providence, RI, USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 06/2011; 6(6):703-9. DOI: 10.4161/epi.6.6.16158
Source: PubMed

ABSTRACT The combined effects of genetic and epigenetic aberrations are well recognized as causal in tumorigenesis. Here, we defined profiles of DNA methylation in primary renal cell carcinomas (RCC) and assessed the association of these profiles with the expression of genes required for the establishment and maintenance of epigenetic marks. A bead-based methylation array platform was used to measure methylation of 1,413 CpG loci in ~800 cancer-associated genes and three methylation classes were derived by unsupervised clustering of tumors using recursively partitioned mixture modeling (RPMM). Quantitative RT-PCR was performed on all tumor samples to determine the expression of DNMT1, DNMT3B, VEZF1 and EZH2. Additionally, methylation at LINE-1 and AluYb8 repetitive elements was measured using bisulfite pyrosequencing. Associations between methylation class and tumor stage (p = 0.05), LINE-1 (p < 0.0001) and AluYb8 (p < 0.0001) methylation, as well as EZH2 expression (p < 0.0001) were noted following univariate analyses. A multinomial logistic regression model controlling for potential confounders revealed that AluYb8 (p < 0.003) methylation and EZH2 expression (p < 0.008) were significantly associated with methylation class membership. Because EZH2 is a member of the Polycomb repressive complex 2 (PRC2), we next analyzed the distribution of Polycomb group (PcG) targets among methylation classes derived by clustering the 1,413 array CpG loci using RPMM. PcG target genes were significantly enriched (p < 0.0001) in methylation classes with greater differential methylation between RCC and non-diseased kidney tissue. This work contributes to our understanding of how repressive marks on DNA and chromatin are dysregulated in carcinogenesis, knowledge that might aid the development of therapies or preventive strategies for human malignancies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients' tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2'-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.
    Epigenetics: official journal of the DNA Methylation Society 01/2014; 9(4). DOI:10.4161/epi.27795 · 5.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation is considered as one of the most important epigenetic mechanisms and it is catalyzed by DNA methyltransferases (DNMTs). DNMT1 abundance has been frequently seen in urogenital system tumors but the reasons for this abundance are not well understood. We aimed to look into the effects of Wnt/β-catenin signaling pathway on overexpression of DNMT1 and aberrant expression of UHRF1 and HAUSP which are responsible for stability of DNMT1 at transcriptional and protein levels in urogenital cancers. In this context, firstly, Wnt/β-catenin signaling pathway was activated by using SB216763 which is a glycogen synthase kinase-3 (GSK3) β inhibitor. Cell proliferation levels in bladder cancer cells, renal cell carcinoma, and prostate cancer cells treated with GSK3β inhibitor (SB216763) were detected by WST-1 reagent. WIF-1 gene methylation profile was determined by methylation-specific PCR (MSP); expression levels of target genes β-catenin and WIF-1 by real-time PCR; and protein levels of β-catenin, DNMT1, pGSK3β(Ser9), HAUSP, and UHRF1 by Western Blot. Our results indicated that treatment with SB216763 caused an increased cell proliferation at low dose. mRNA levels of β-catenin increased after treatment with SB216273 and protein levels of pGSK3β(Ser9), β-catenin, and DNMT1 increased in comparison to control. HAUSP and UHRF1 were either up-regulated or down-regulated at the same doses depending on the type of cancer. Also, we showed that protein levels of DNMT1, β-catenin, HAUSP, and UHRF1 decreased after re-expression of WIF-1 following treatment with DAC. In Caki-2 cells, β-catenin pathway might have accounted for the stability of DNMT1 expression, whereas such relation is not valid for T24 and PC3 cells. Our findings may offer a new approach for determination of molecular effects of Wnt/β-catenin signal pathway on DNMT1. This may allow us to identify new molecular targets for the treatment of urogenital cancers.
    Experimental Biology and Medicine 10/2014; 240(5). DOI:10.1177/1535370214556951 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two recurrent mutations, K27M and G34R/V, within histone variant H3.3 were recently identified in ∼50% of pHGGs. Both mutations define clinically and biologically distinct subgroups of pHGGs. Here, we provide further insight about the dominant-negative effect of K27M mutant H3.3, leading to a global reduction of the repressive histone mark H3K27me3. We demonstrate that this is caused by aberrant recruitment of the PRC2 complex to K27M mutant H3.3 and enzymatic inhibition of the H3K27me3-establishing methyltransferase EZH2. By performing chromatin immunoprecipitation followed by next-generation sequencing and whole-genome bisulfite sequencing in primary pHGGs, we show that reduced H3K27me3 levels and DNA hypomethylation act in concert to activate gene expression in K27M mutant pHGGs.
    Cancer cell 10/2013; DOI:10.1016/j.ccr.2013.10.006 · 23.89 Impact Factor


Available from