Polycomb group genes are targets of aberrant DNA methylation in renal cell carcinoma

Department of Pathology, Brown University, Providence, RI, USA.
Epigenetics: official journal of the DNA Methylation Society (Impact Factor: 5.11). 06/2011; 6(6):703-9. DOI: 10.4161/epi.6.6.16158
Source: PubMed

ABSTRACT The combined effects of genetic and epigenetic aberrations are well recognized as causal in tumorigenesis. Here, we defined profiles of DNA methylation in primary renal cell carcinomas (RCC) and assessed the association of these profiles with the expression of genes required for the establishment and maintenance of epigenetic marks. A bead-based methylation array platform was used to measure methylation of 1,413 CpG loci in ~800 cancer-associated genes and three methylation classes were derived by unsupervised clustering of tumors using recursively partitioned mixture modeling (RPMM). Quantitative RT-PCR was performed on all tumor samples to determine the expression of DNMT1, DNMT3B, VEZF1 and EZH2. Additionally, methylation at LINE-1 and AluYb8 repetitive elements was measured using bisulfite pyrosequencing. Associations between methylation class and tumor stage (p = 0.05), LINE-1 (p < 0.0001) and AluYb8 (p < 0.0001) methylation, as well as EZH2 expression (p < 0.0001) were noted following univariate analyses. A multinomial logistic regression model controlling for potential confounders revealed that AluYb8 (p < 0.003) methylation and EZH2 expression (p < 0.008) were significantly associated with methylation class membership. Because EZH2 is a member of the Polycomb repressive complex 2 (PRC2), we next analyzed the distribution of Polycomb group (PcG) targets among methylation classes derived by clustering the 1,413 array CpG loci using RPMM. PcG target genes were significantly enriched (p < 0.0001) in methylation classes with greater differential methylation between RCC and non-diseased kidney tissue. This work contributes to our understanding of how repressive marks on DNA and chromatin are dysregulated in carcinogenesis, knowledge that might aid the development of therapies or preventive strategies for human malignancies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic changes are frequently observed in cancer. However, their role in establishing or sustaining the malignant state has been difficult to determine due to the lack of experimental tools that enable resetting of epigenetic abnormalities. To address this, we applied induced pluripotent stem cell (iPSC) reprogramming techniques to invoke widespread epigenetic resetting of glioblastoma (GBM)-derived neural stem (GNS) cells. GBM iPSCs (GiPSCs) were subsequently redifferentiated to the neural lineage to assess the impact of cancer-specific epigenetic abnormalities on tumorigenicity. GiPSCs and their differentiating derivatives display widespread resetting of common GBM-associated changes, such as DNA hypermethylation of promoter regions of the cell motility regulator TES (testis-derived transcript), the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C; p57KIP2), and many polycomb-repressive complex 2 (PRC2) target genes (e.g., SFRP2). Surprisingly, despite such global epigenetic reconfiguration, GiPSC-derived neural progenitors remained highly malignant upon xenotransplantation. Only when GiPSCs were directed to nonneural cell types did we observe sustained expression of reactivated tumor suppressors and reduced infiltrative behavior. These data suggest that imposing an epigenome associated with an alternative developmental lineage can suppress malignant behavior. However, in the context of the neural lineage, widespread resetting of GBM-associated epigenetic abnormalities is not sufficient to override the cancer genome.
    Genes & development 03/2013; 27(6):654-69. DOI:10.1101/gad.212662.112 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated a prognostic significance and the mechanism of aberrant nuclear expression of EZH2, a histone methyltransferase, in human renal cell carcinoma (RCC). We found nuclear EZH2 in 48 of 100 RCCs and it was significantly correlated with worse survival in RCC patients. We detected a decreased expression of miR-101 in 15 of 54 RCCs. We found that re-expression of miR-101 resulted in EZH2 depletion and decreased renal cancer cell proliferation. Our results show nuclear EZH2 as a prognostic marker of worse survival in human RCC, and identify miR-101 as a negative regulator of EZH2 expression and renal cancer cell proliferation.
    Biochemical and Biophysical Research Communications 05/2012; 422(4):607-14. DOI:10.1016/j.bbrc.2012.05.035 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent investigations of renal cell carcinoma (RCC) have revealed several epigenetic modifications, as well as alterations in the genes and enzymes that regulate these changes. Preclinical models have revealed that histone gene modifiers and epigenetic alterations may play a critical role in RCC tumorigenesis. Specific changes in DNA methylation and mutations of histone modifiers have been identified and may be associated with an aggressive phenotype. In addition, the potential of reversing the effects of these enzymes and hence reversing the cellular epigenetic landscape to a "normal phenotype" have led to an increasing interest in developing targeted chromatin remodeling agents. However, the translation of the understanding of these changes to the clinic for the treatment of RCC has posed significant challenges, partly due to tumor heterogeneity. This review describes the aberrant histone and DNA alterations recently reported in RCC and highlights the potential targeted chromatin remodeling therapies in the management of this disease.
    The Cancer Journal 01/2013; 19(4):333-40. DOI:10.1097/PPO.0b013e3182a09e07 · 3.61 Impact Factor


Available from