Specific cell-permeable inhibitor of proteasome trypsin-like sites selectively sensitizes myeloma cells to bortezomib and carfilzomib.

Department of Pharmacology and Toxicology, Dartmouth Medical School, Dartmouth College, Lebanon, NH 03756, USA.
Chemistry & biology (Impact Factor: 6.52). 05/2011; 18(5):608-18. DOI: 10.1016/j.chembiol.2011.02.015
Source: PubMed

ABSTRACT Proteasomes degrade the majority of proteins in mammalian cells, are involved in the regulation of multiple physiological functions, and are established targets of anticancer drugs. The proteasome has three types of active sites. Chymotrypsin-like sites are the most important for protein breakdown and have long been considered the only suitable targets for antineoplastic drugs; however, our recent work demonstrated that inhibitors of caspase-like sites sensitize malignant cells to inhibitors of the chymotrypsin-like sites. Here, we describe the development of specific cell-permeable inhibitors and an activity-based probe of the trypsin-like sites. These compounds selectively sensitize multiple myeloma cells to inhibitors of the chymotrypsin-like sites, including antimyeloma agents bortezomib and carfilzomib. Thus, trypsin-like sites are cotargets for anticancers drugs. Together with inhibitors of chymotrypsin- and caspase-like sites developed earlier, we provide the scientific community with a complete set of tools to separately modulate proteasome active sites in living cells.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin-proteasome pathway was first validated as a target for cancer therapy with the demonstration of the activity of the boronic acid proteasome inhibitor (PI) bortezomib (Velcade) against relapsed and relapsed/refractory multiple myeloma. Another generation of PIs is now entering the clinical arena; this includes intravenous agents such as carfilzomib, CEP-18770, and marizomib, and oral drugs such as MLN9708 and ONX 0912. These novel agents will likely first be used for patients with disease that has either relapsed or been refractory to prior therapy (including bortezomib-based regimens) because of their ability to overcome drug resistance, or will be used in patients who are intolerant of, or are not candidates for bortezomib. Preclinical studies also suggest that PIs may act synergistically with other conventional and novel agents, or even with one another in rationally designed combination regimens. In addition, other inhibitors that selectively target only the immunoproteasome and not the constitutive proteasome, as well as agents that bind to noncatalytic proteasome subunits, are emerging as potential drug candidates. Taken together, it seems likely that we have only begun to appreciate the full potential of inhibition of the proteasome. This article extrapolates our current knowledge into an algorithm for the future use of these inhibitors against multiple myeloma.
    Oncology (Williston Park, N.Y.) 11/2011; 25(12 Suppl 2). · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Six structurally diverse cytotoxic gold compounds are reported to cause profound and differential inhibition of the three main catalytic activities of purified 20S proteasome whilst auranofin, an established gold(I) drug in clinical use, is nearly ineffective. In particular, the gold(I) complex [(pbiH)Au(PPh3)]PF6, turns out to be the most potent inhibitor of all three enzyme activities with sub-micromolar IC50 values. The present results further support the view that proteasome inhibition may play a major - yet not exclusive - role in the cytotoxic actions of gold based anticancer agents.
    Journal of Inorganic Biochemistry 08/2014; 141C:79-82. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Specialized variants of the constitutive 20S proteasome in the immune system like the immunoproteasomes and the thymoproteasome contain active site-bearing subunits which differ in their cleavage priorities and substrate binding pockets. The immunoproteasome plays a crucial role in antigen processing and for the differentiation of pro-inflammatory T helper cells which are involved in the pathogenesis of autoimmunity. Selective inhibitors of the immunoproteasome and constitutive proteasome have recently been generated which interfere with the development and progression of autoimmune diseases. Here we describe these inhibitors and their therapeutic potential as predicted from preclinical models.
    Current Opinion in Chemical Biology 09/2014; 23C:16-22. · 7.65 Impact Factor

Full-text (3 Sources)

Available from
Aug 4, 2014