Induced pluripotent stem cell therapies for geographic atrophy of age-related macular degeneration.

Institute for Genomic Medicine and Shiley Eye Center, University of California at San Diego, La Jolla, CA 92093, USA.
Seminars in ophthalmology (Impact Factor: 1.2). 05/2011; 26(3):216-24. DOI: 10.3109/08820538.2011.577498
Source: PubMed

ABSTRACT There is currently no FDA-approved therapy for treating patients with geographic atrophy (GA), a late stage of age-related macular degeneration (AMD). Cell transplantation has the potential to restore vision in these patients. This review discusses how recent advancement in induced pluripotent stem (iPS) cells provides a promising therapy for GA treatment. Recent advances in stem cell biology have demonstrated that it is possible to derive iPS cells from human somatic cells by introducing reprogramming factors. Human retinal pigment epithelium (RPE) cells and photoreceptors can be derived from iPS cells by defined factors. Studies show that transplanting these cells can stabilize or recover vision in animal models. However, cell derivation protocols and transplantation procedures still need to be optimized. Much validation has to be done before clinical-grade, patient-derived iPS can be applied for human therapy. For now, RPE cells and photoreceptors derived from patient-specific iPS cells can serve as a valuable tool in elucidating the mechanism of pathogenesis and drug discovery for GA.

  • Source
    Age Related Macular Degeneration - The Recent Advances in Basic Research and Clinical Care, 01/2012; , ISBN: 978-953-307-864-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell growth factors (VEGF), have been used to prevent the neovascularization that accompanies AMD and DR resulting in the amelioration of vision in a significant number of patients. In animal models it has been shown that transfection of RPE cells with the gene for PEDF and other growth factors can prevent or slow degeneration. A limited number of studies in humans have also shown that transfection of RPE cells in vivo with the gene for PEDF is effective in preventing degeneration and restore vision. Most of these studies have used virally mediated gene delivery with all its accompanying side effects and have not been widely used. New techniques using non-viral protocols that allow efficient delivery and permanent integration of the transgene into the host cell genome offer novel opportunities for effective treatment of retinal degenerations.
    Current Genomics 08/2012; 13(5):350-362. DOI:10.2174/138920212801619214 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the leading cause of blindness in people over age 55 in the U.S. and the developed world. This condition leads to the progressive impairment of central visual acuity. There are significant limitations in the understanding of disease progression in AMD as well as a lack of effective methods of treatment. Lately, there has been considerable enthusiasm for application of stem cell biology for both disease modeling and therapeutic application. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) have been used in cell culture assays and in vivo animal models. Recently a clinical trial was approved by FDA to investigate the safety and efficacy of the human embryonic stem cell-derived retinal pigment epithelium (RPE) transplantation in sub-retinal space of patients with dry AMD These studies suggest that stem cell research may provide both insight regarding disease development and progression, as well as direction for therapeutic innovation for the millions of patients afflicted with AMD.
    Journal of Translational Medicine 03/2013; 11(1):53. DOI:10.1186/1479-5876-11-53 · 3.99 Impact Factor