Determination of chlorfenapyr in leek grown under greenhouse conditions with GC-μECD and confirmation by mass spectrometry

Natural Products Chemistry Laboratory, Division of Applied Bioscience and Biotechnology, College of Agriculture and Life Science, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Republic of Korea.
Biomedical Chromatography (Impact Factor: 1.72). 02/2012; 26(2):172-7. DOI: 10.1002/bmc.1643
Source: PubMed


A simple analytical method was developed for the determination of chlorfenapyr residues in leeks grown under greenhouse conditions. Residues were extracted by salting out, analyzed by gas chromatography with microelectron-capture detection, and confirmed via gas chromatography-mass spectrometry. The calibration curves were found to be linear with correlation coefficients (r(2) ) in excess of 0.998. The limits of detection and quantification were 0.0015 and 0.005 mg kg(-1) , respectively. For validation purposes, recovery studies were carried out at low and high levels. Yield recovery rates were 87.27-89.64% with a relative standard deviation <6%. A maximum of 0.32 mg kg(-1) of chlorfenapyr residue was detected in leek sample sprayed three times at 7 day intervals until 7 days prior to harvest. The results of this study suggest that chlorfenapyr is acceptable for application in/on leeks under the recommended dosage regimen.

Download full-text


Available from: A. M. Abd El-Aty, Dec 24, 2013
  • Source
    • "Samples were prepared according to our previous study with major modifications (Rahman et al. 2012). A 25 g homogenized perilla leaf sample was weighed in a 250 mL Erlenmeyer flask to which 100 mL acetonitrile was added. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Perilla leaves contain many interfering substances; thus, it is difficult to protect the analytes during identification and integration. Furthermore, increasing the amount of sample to lower the detection limit worsens the situation. To overcome this problem, we established a new method using a combination of solid-phase extraction (SPE) and dispersive solid-phase (d-SPE) extraction to analyze pyraclostrobin in perilla leaves by liquid chromatography with ultraviolet absorbance detection. The target compound was quantitated by external calibration with a good determination coefficient (R(2) = 0.997). The method was validated (in triplicate) with three fortification levels, and 79.06- 89.10% of the target compound was recovered with a relative standard deviation < 4. The limits of detection and quantification were 0.0033 and 0.01 mg/kg, respectively. The method was successfully applied to field samples collected from two different areas at Gwangju and Muan. The decline in the resiudue concentrations was best ascribed to a first-order kinetic model with half-lives of 5.7 and 4.6 days. The variation between the patterns was attributed to humidity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Biomedical Chromatography 05/2015; 29(12). DOI:10.1002/bmc.3523 · 1.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes (MWCNTs) as a reversed-dispersive solid-phase extraction (r-DSPE) material combined with gas chromatography-mass spectrometry was developed for the determination of 14 pesticides in complex matrices. Four vegetables (leek, onion, ginger and garlic) were selected as the complex matrices for validating this new method. This technique involved the acetonitrile-based sample preparation and MWCNTs were used as the r-DSPE material in the cleanup step. Two important parameters influencing the MWCNTs efficiency, the external diameters and the amount of MWCNTs used, were investigated. Under the optimized conditions, recoveries of 78-110% were obtained for the target analytes in the complex matrices at two concentration levels of 0.02 and 0.2 mg/kg. In addition, the RSD values ranged from 1 to 13%. LOQs and LODs for 14 pesticides ranged from 2 to 20 μg/kg and from 1 to 6 μg/kg, respectively.
    Journal of Separation Science 01/2012; 35(1):153-8. DOI:10.1002/jssc.201100566 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A simple and rapid method based on high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of imidacloprid and chlorfenapyr residues in chieh-qua. Field trials were designed to investigate the dissipation and terminal residue behavior of the mixed formulation of imidacloprid and chlorfenapyr in chieh-qua in Guangzhou and Nanning areas. Risk assessment was performed by calculating the risk quotient (RQ) values. The developed analytical method exhibited recoveries of 89.9–110.3 % with relative standard deviations (RSDs) of 2.8–12.5 % at the spiked levels of 0.01, 0.10, and 1.00 mg/kg. The limit of detection (LOD) was 0.003 mg/kg, and the limit of quantification (LOQ) was 0.01 mg/kg for both imidacloprid and chlorfenapyr. It was found that the half-lives of imidacloprid in chieh-qua under field conditions were 3.3 and 3.5 days in Guangzhou and Nanning at a dose of 180 g ai/ha, while the half-lives of chlorfenapyr were 3.3 and 2.6 days, respectively. The terminal residues of imidacloprid and chlorfenapyr were from 0.01 to 0.21 mg/kg and from 0.01 to 0.46 mg/kg, respectively. Results of dietary exposure assessment showed that the RQ values were much lower than 1, indicating that the risk of imidacloprid and chlorfenapyr applied in chieh-qua was negligible to human health under recommended dosage and good agricultural practices. The proposed study would provide guidance for safe and reasonable use of imidacloprid and chlorfenapyr in chieh-qua cultivation in China.
    Environmental Monitoring and Assessment 10/2015; 187(10). DOI:10.1007/s10661-015-4846-2 · 1.68 Impact Factor