Article

Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen.

Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(23):9578-82. DOI: 10.1073/pnas.1106383108
Source: PubMed

ABSTRACT Despite encouraging clinical results with next generation drugs (MDV3100 and abiraterone) that inhibit androgen receptor (AR) signaling in patients with castration-resistant prostate cancer (CRPC), responses are variable and short-lived. There is an urgent need to understand the basis of resistance to optimize their future use. We reasoned that a radiopharmaceutical that measures intratumoral changes in AR signaling could substantially improve our understanding of AR pathway directed therapies. Expanding on previous observations, we first show that prostate-specific membrane antigen (PSMA) is repressed by androgen treatment in multiple models of AR-positive prostate cancer in an AR-dependent manner. Conversely, antiandrogens up-regulate PSMA expression. These expression changes, including increased PSMA expression in response to treatment with the antiandrogen MDV3100, can be quantitatively measured in vivo in human prostate cancer xenograft models through PET imaging with a fully humanized, radiolabeled antibody to PSMA, (64)Cu-J591. Collectively, these results establish that relative changes in PSMA expression levels can be quantitatively measured using a human-ready imaging reagent and could serve as a biomarker of AR signaling to noninvasively evaluate AR activity in patients with CRPC.

Full-text

Available from: Neil H Bander, May 19, 2015
0 Followers
 · 
107 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the introduction of positron emission tomography (PET) imaging with (68)Ga-PSMA-HBED-CC (=(68)Ga-DKFZ-PSMA-11), this method has been regarded as a significant step forward in the diagnosis of recurrent prostate cancer (PCa). However, published data exist for small patient cohorts only. The aim of this evaluation was to analyse the diagnostic value of (68)Ga-PSMA-ligand PET/CT in a large cohort and the influence of several possibly interacting variables. We performed a retrospective analysis in 319 patients who underwent (68)Ga-PSMA-ligand PET/CT from 2011 to 2014. Potential influences of several factors such as prostate-specific antigen (PSA) level and doubling time (DT), Gleason score (GSC), androgen deprivation therapy (ADT), age and amount of injected tracer were evaluated. Histological verification was performed in 42 patients after the (68)Ga-PSMA-ligand PET/CT. Tracer uptake was measured in 901 representative tumour lesions. In 82.8 % of the patients at least one lesion indicative of PCa was detected. Tumor-detection was positively associated with PSA level and ADT. GSC and PSA-DT were not associated with tumor-detection. The average maximum standardized uptake value (SUVmax) of tumour lesions was 13.3 ± 14.6 (0.7-122.5). Amongst lesions investigated by histology, 30 were false-negative in 4 different patients, and all other lesions (n = 416) were true-positive or true-negative. A lesion-based analysis of sensitivity, specificity, negative predictive value (NPV) and positive predictive value (PPV) revealed values of 76.6 %, 100 %, 91.4 % and 100 %. A patient-based analysis revealed a sensitivity of 88.1 %. Of 116 patients available for follow-up, 50 received local therapy after (68)Ga-PSMA-ligand PET/CT. (68)Ga-PSMA-ligand PET/CT can detect recurrent PCa in a high number of patients. In addition, the radiotracer is highly specific for PCa. Tumour detection is positively associated with PSA and ADT. (68)Ga-PSMA-ligand PET/CT can help delay systemic therapy of PCa.
    European journal of nuclear medicine and molecular imaging 11/2014; 42(2). DOI:10.1007/s00259-014-2949-6 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The specificity of monoclonal antibodies represents a potential therapeutic advantage, but their use as single agents in oncology has proven limited to date. The development of antibody-drug conjugates (ADCs) takes advantage of the specificity of the monoclonal antibody and potent cytotoxic effect of chemotherapy, leading to enhanced cytotoxicity in target cells and limiting toxicity to normal tissue. Microtubules represent a validated oncologic target in a range of tumor types, with a number of anti-microtubule targeting cytotoxic drugs approved for cancer use. The systemic use of potent microtubule-binding agents is limited by their effects in normal cells, which leads to toxicity including myelosuppression and peripheral neuropathy. Linking these agents to monoclonal antibodies may limit toxicity to normal tissues and increase drug concentration in target tissues, also allowing the use of more potent agents which would be too toxic to administer in their unbound form. Two such ADCs have been approved for clinical use and many others are in development. Here we review the characteristics of each of the ADC components that have led to efficacious therapies and discuss some of the tubulin inhibitor-based ADCs in development for cancer therapy.
    OncoTargets and Therapy 01/2014; 7:2227-36. DOI:10.2147/OTT.S46887 · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: We investigated the role of 18F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT) in the early evaluation of abiraterone and outcome prediction in patients with metastatic castration-resistant prostate cancer (CRPC). Patient and methods: Forty-three patients with metastatic CRPC progressing after docetaxel received abiraterone 1,000 mg daily with prednisone 5 mg twice daily. Patients were evaluated monthly for serological PSA response and safety. FCH-PET/CT was done at baseline and after 3 to 6 weeks. Univariate and multivariate Cox regression models addressed potential predictors of progression-free survival (PFS) and overall survival (OS). Results: Declines in PSA level of ≥50% were seen in 21 of 43 (49%) patients. Forty-two patients were evaluable for FCH-PET/CT response. FCH-PET/CT bone flare was observed in 4 of 42 (10%) evaluable patients. In univariate analysis, PSA decline and FCH-PET/CT response predicted PFS, while PSA decline and FCH-PET/CT (progression vs non progression) predicted OS. In multivariate analysis, only FCH-PET/CT (progression vs nonprogression) remained significant for PFS and OS (p = 0.022 and p = 0.027, respectively). Conclusion: Early FCH-PET/CT can predict clinical outcome in CRPC beyond PSA response. These data support further studies on FCH-PET/CT for abiraterone monitoring and outcome prediction in patients with CRPC.
    Oncotarget 10/2014; · 6.63 Impact Factor