Structure of a bacterial cell surface decaheme electron conduit.

Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 06/2011; 108(23):9384-9. DOI: 10.1073/pnas.1017200108
Source: PubMed

ABSTRACT Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a novel “electrogenic” type of sulfur oxidation has been documented in marine sediments, whereby long filamentous cable bacteria are generating electrical currents over centimeter-scale distances. Here we propose a numerical model description that is capable of quantitatively simulating the solute depth profiles and biogeochemical transformations in such electro-active marine sediments. The model is based on a conventional reactive transport description of marine sediments, which is extended with a new model formulation for the long-distance electron transport induced by the cable bacteria. The mechanism of electron hopping is implemented to describe the electron transport along the longitudinal axis of the microbial filaments. We demonstrate that this model is capable of reproducing the observed geochemical fingerprint of electrogenic sulfur oxidation, which consists of a characteristic set of O2, pH and H2S depth profiles. Our simulation results suggest that the cable bacteria must have a high affinity for both oxygen and sulfide, and that intensive cryptic sulfur cycling takes place within the suboxic zone. A sensitivity analysis shows how electrogenic sulfur oxidation strongly impacts the biogeochemical cycling of sulfur, iron, carbon and calcium in marine sediments.
    Geochimica et Cosmochimica Acta 12/2014; 52. DOI:10.1016/j.gca.2014.12.014 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exoelectrogens are catalytic microorganisms competent to shuttle electrons exogenously to the electrode surface without utilizing artificial mediators. Diverse microorganisms acting as exoelectrogens in the fluctuating ambience of microbial fuel cells (MFCs) propose unalike metabolic pathways and incompatible, specific proteins or genes for their inevitable performance toward bioelectricity generation. A pivotal mechanism known as quorum sensing allows bacterial population to communicate and regulates the expression of biofilm-related genes. Moreover, it has been found that setting the anode potential affects the metabolism of the exoelectrogens and hence the output of MFCs. Microscopic, spectrometry investigations and gene deletion studies have confirmed the expression of certain genes for outer-membrane multiheme cytochromes and conductive pili, and their potential roles in the exoelectrogenic activity. Further, cyclic voltammetry has suggested the role of multifarious redox-active compounds secreted by the exoelectrogens in direct electron transport mechanisms. Besides, it also explores the various mechanisms of exoelectrogens with genetic and molecular approaches, such as biofilm formation, microbial metabolism, bioelectrogenesis, and electron transfer mechanisms from inside the exoelectrogens to the electrodes and vice versa. Copyright © 2015 John Wiley & Sons, Ltd.
    International Journal of Energy Research 02/2015; DOI:10.1002/er.3305 · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multi-haem cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometres. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-haem cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-haem cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward, there are opportunities to engage multi-haem cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence, it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-haem cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-haem cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
    Journal of The Royal Society Interface 01/2015; 12(102):20141117. DOI:10.1098/rsif.2014.1117 · 3.86 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014