Article

Conformational changes in bacteriophage P22 scaffolding protein induced by interaction with coat protein.

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
Journal of Molecular Biology (Impact Factor: 3.91). 07/2011; 410(2):226-40. DOI: 10.1016/j.jmb.2011.05.006
Source: PubMed

ABSTRACT Many prokaryotic and eukaryotic double-stranded DNA viruses use a scaffolding protein to assemble their capsid. Assembly of the double-stranded DNA bacteriophage P22 procapsids requires the interaction of 415 molecules of coat protein and 60-300 molecules of scaffolding protein. Although the 303-amino-acid scaffolding protein is essential for proper assembly of procapsids, little is known about its structure beyond an NMR structure of the extreme C-terminus, which is known to interact with coat protein. Deletion mutagenesis indicates that other regions of scaffolding protein are involved in interactions with coat protein and other capsid proteins. Single-cysteine and double-cysteine variants of scaffolding protein were generated for use in fluorescence resonance energy transfer and cross-linking experiments designed to probe the conformation of scaffolding protein in solution and within procapsids. We showed that the N-terminus and the C-terminus are proximate in solution, and that the middle of the protein is near the N-terminus but not accessible to the C-terminus. In procapsids, the N-terminus was no longer accessible to the C-terminus, indicating that there is a conformational change in scaffolding protein upon assembly. In addition, our data are consistent with a model where scaffolding protein dimers are positioned parallel with one another with the associated C-termini.

0 Bookmarks
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conformational switching is an overarching paradigm in which to describe scaffolding protein-mediated virus assembly. However, rapid morphogenesis with small assembly subunits hinders the isolation of early morphogenetic intermediates in most model systems. Consequently, conformational switches are often defined by comparing the structures of virions, procapsids and aberrantly assembled particles. In contrast, X174 morphogenesis proceeds through at least three preprocapsid intermediates, which can be biochemically isolated. This affords a detailed analysis of early morphogenesis and internal scaffolding protein function. Amino acid substitutions were generated for the six C-terminal, aromatic amino acids that mediate most coat-internal scaffolding protein contacts. The biochemical characterization of mutant assembly pathways revealed two classes of molecular defects, protein binding and conformational switching, a novel phenotype. The conformational switch mutations kinetically trapped assembly intermediates before procapsid formation. Although mutations trapped different particles, they shared common second-site suppressors located in the viral coat protein. This suggests a fluid assembly pathway, one in which the scaffolding protein induces a single, coat protein conformational switch and not a series of sequential reactions. In this model, an incomplete or improper switch would kinetically trap intermediates.
    Journal of Virology 07/2012; 86(18):9911-8. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
    Journal of Biological Chemistry 08/2012; 287(40):33766-80. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Engineered virus-like particles (VLP) are attractive for fabricating nanostructured materials for applications in diverse areas such as catalysis, drug delivery, biomedicine, composites, etc. Basic understanding of the interaction between the inorganic guest and biomolecular host is thus important for the controlled synthesis of inorganic nanoparticles inside VLP and rational assembly of ordered VLP-based hierarchical nanostructures. We have investigated in detail the formation mechanism and growth kinetics of semiconducting nanocrystals confined inside genetically engineered bacteriophage P22 VLP using semiconducting CdS as a prototypical example. The selective nucleation and growth of CdS at the engineered sites is found to be uniform during the early stage, followed by a more stochastic growth process. Furthermore, kinetic studies reveal that the presence of an engineered biotemplate helps in significantly retarding the reaction rate. These findings provide guidance for the controlled synthesis of a wide range of other inorganic materials confined inside VLP, and are of practical importance for the rational design of VLP-based hierarchical nanostuctures.
    Scientific Reports 01/2014; 4:3832. · 5.08 Impact Factor

Full-text (2 Sources)

View
17 Downloads
Available from
May 28, 2014