Conformational Changes in Bacteriophage P22 Scaffolding Protein Induced by Interaction with Coat Protein

Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
Journal of Molecular Biology (Impact Factor: 4.33). 07/2011; 410(2):226-40. DOI: 10.1016/j.jmb.2011.05.006
Source: PubMed

ABSTRACT Many prokaryotic and eukaryotic double-stranded DNA viruses use a scaffolding protein to assemble their capsid. Assembly of the double-stranded DNA bacteriophage P22 procapsids requires the interaction of 415 molecules of coat protein and 60-300 molecules of scaffolding protein. Although the 303-amino-acid scaffolding protein is essential for proper assembly of procapsids, little is known about its structure beyond an NMR structure of the extreme C-terminus, which is known to interact with coat protein. Deletion mutagenesis indicates that other regions of scaffolding protein are involved in interactions with coat protein and other capsid proteins. Single-cysteine and double-cysteine variants of scaffolding protein were generated for use in fluorescence resonance energy transfer and cross-linking experiments designed to probe the conformation of scaffolding protein in solution and within procapsids. We showed that the N-terminus and the C-terminus are proximate in solution, and that the middle of the protein is near the N-terminus but not accessible to the C-terminus. In procapsids, the N-terminus was no longer accessible to the C-terminus, indicating that there is a conformational change in scaffolding protein upon assembly. In addition, our data are consistent with a model where scaffolding protein dimers are positioned parallel with one another with the associated C-termini.

Download full-text


Available from: Carolyn M Teschke, Aug 14, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paget's disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protein. SQSTM1 is ubiquitously expressed and there is, as yet, no clear reason why these mutations only appear to cause an osteoclast-related phenotype. Using co-immunoprecipitation and tandem mass spectrometry, we identified a novel interaction in human osteoclast-like cells between SQSTM1 and Autophagy-Linked FYVE domain-containing protein (ALFY/WDFY3). Endogenous ALFY and SQSTM1 both localised within the nuclei of osteoclasts and their mononuclear precursors. When osteoclasts were starved to induce autophagy, SQSTM1 and ALFY relocated to the cytoplasm where they formed large aggregates, with cytoplasmic relocalisation appearing more rapid in mature osteoclasts than in precursors in the same culture. Overexpression of wild-type SQSTM1 in HEK293 cells also resulted in the formation of cytoplasmic aggregates containing SQSTM1 and endogenous ALFY, as did overexpression of a PDB-causing missense mutant form of SQSTM1, indicating that this mutation does not impair the formation of SQSTM1- and ALFY-containing aggregates. Expression of ALFY in bone cells has not previously been reported, and the process of autophagy has not been studied with respect to osteoclast activity. We have identified a functional interaction between SQSTM1 and ALFY in osteoclasts under conditions of cell stress. The difference in response to starvation between mature osteoclasts and their precursors may begin to explain the cell-specific functional effects of SQSTM1 mutations in PDB.
    Biochemical and Biophysical Research Communications 10/2010; 402(3):543-8. DOI:10.1016/j.bbrc.2010.10.076 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine virus maturation of selected nonenveloped and enveloped single-stranded RNA viruses, retroviruses, bacteriophages, and herpesviruses. Processes associated with maturation in the RNA viruses range from subtle (nodaviruses and picornaviruses) to dramatic (tetraviruses and togaviruses). The elaborate assembly and maturation pathway of HIV is discussed in contrast to the less sophisticated but highly efficient processes associated with togaviruses. Bacteriophage assembly and maturation are discussed in general terms, with specific examples chosen for emphasis. Finally the herpesviruses are compared with bacteriophages. The data support divergent evolution of nodaviruses, picornaviruses, and tetraviruses from a common ancestor and divergent evolution of alphaviruses and flaviviruses from a common ancestor. Likewise, bacteriophages and herpesviruses almost certainly share a common ancestor in their evolution. Comparing all the viruses, we conclude that maturation is a convergent process that is required to solve conflicting requirements in biological dynamics and function.
    Annual Review of Biophysics 05/2011; 41:473-96. DOI:10.1146/annurev-biophys-042910-155407 · 12.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper assembly of viruses must occur through specific interactions between capsid proteins. Many double-stranded DNA viruses and bacteriophages require internal scaffolding proteins to assemble their coat proteins into icosahedral capsids. The 303 amino acid bacteriophage P22 scaffolding protein is mostly helical, and its C-terminal helix-turn-helix (HTH) domain binds to the coat protein during virion assembly, directing the formation of an intermediate structure called the procapsid. The interaction between coat and scaffolding protein HTH domain is electrostatic, but the amino acids that form the protein-protein interface have yet to be described. In the present study, we used alanine scanning mutagenesis of charged surface residues of the C-terminal HTH domain of scaffolding protein. We have determined that P22 scaffolding protein residues R293 and K296 are crucial for binding to coat protein and that the neighboring charges are not essential but do modulate the affinity between the two proteins.
    Virology 12/2011; 421(1):1-11. DOI:10.1016/j.virol.2011.09.005 · 3.28 Impact Factor
Show more