Functional consequences of bidirectional promoters.

Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
Trends in Genetics (Impact Factor: 11.6). 07/2011; 27(7):267-76. DOI: 10.1016/j.tig.2011.04.002
Source: PubMed

ABSTRACT Several studies have shown that promoters of protein-coding genes are origins of pervasive non-coding RNA transcription and can initiate transcription in both directions. However, only recently have researchers begun to elucidate the functional implications of this bidirectionality and non-coding RNA production. Increasing evidence indicates that non-coding transcription at promoters influences the expression of protein-coding genes, revealing a new layer of transcriptional regulation. This regulation acts at multiple levels, from modifying local chromatin to enabling regional signal spreading and more distal regulation. Moreover, the bidirectional activity of a promoter is regulated at multiple points during transcription, giving rise to diverse types of transcripts.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence suggests that some human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively ERVs) regulate the expression of neighboring genes in normal and disease states; e.g. the human globin locus is regulated by an ERV9 that coordinates long-range gene switching during hematopoiesis and activates also intergenic transcripts. While complex transcription regulation is associated with integration of certain exogenous retroviruses, comparable regulation sustained by ERVs is less understood. We analyzed ERV transcription using ERV9 consensus sequences and publically available RNA-sequencing, chromatin immunoprecipitation with sequencing (ChIP-seq) and cap analysis gene expression (CAGE) data from ENCODE. We discovered previously undescribed and advanced transcription regulation mechanisms in several human reference cell lines. We show that regulation by ERVs involves long-ranging activations including complex RNA splicing patterns, and transcription of large unannotated regions ranging in size from several hundred kb to around 1 Mb. Moreover, regulation was found to be cooperatively sustained in some loci by multiple ERVs and also non-LTR repeats. Our analyses show that endogenous retroviruses sustain advanced transcription regulation in human cell lines, which shows similarities to complex insertional mutagenesis effects exerted by exogenous retroviruses. By exposing previously undescribed regulation effects, this study should prove useful for understanding fundamental transcription mechanisms resulting from evolutionary acquisition of retroviral sequence in the human genome.
    Retrovirology 04/2015; 12(1):32. DOI:10.1186/s12977-015-0161-9 · 4.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Repeated exposure to addictive drugs elicits long-lasting cellular and molecular changes. It has been reported that the aberrant expression of long non-coding RNAs (lncRNAs) is involved in cocaine and heroin addiction, yet the expression profile of lncRNAs and their potential effects on methamphetamine (METH)-induced locomotor sensitization are largely unknown. Results Using high-throughput strand-specific complementary DNA sequencing technology (ssRNA-seq), here we examined the alterations in the lncRNAs expression profile in the nucleus accumbens (NAc) of METH-sensitized mice. We found that the expression levels of 6246 known lncRNAs (6215 down-regulated, 31 up-regulated) and 8442 novel lncRNA candidates (8408 down-regulated, 34 up-regulated) were significantly altered in the METH-sensitized mice. Based on characterizations of the genomic contexts of the lncRNAs, we further showed that there were 5139 differentially expressed lncRNAs acted via cis mechanisms, including sense intronic (4295 down-regulated and one up-regulated), overlapping (25 down-regulated and one up-regulated), natural antisense transcripts (NATs, 148 down-regulated and eight up-regulated), long intergenic non-coding RNAs (lincRNAs, 582 down-regulated and five up-regulated), and bidirectional (72 down-regulated and two up-regulated). Moreover, using the program RNAplex, we identified 3994 differentially expressed lncRNAs acted via trans mechanisms. Gene ontology (GO) and KEGG pathway enrichment analyses revealed that the predicted cis- and trans- associated genes were significantly enriched during neuronal development, neuronal plasticity, learning and memory, and reward and addiction. Conclusions Taken together, our results suggest that METH can elicit global changes in lncRNA expressions in the NAc of sensitized mice that might be involved in METH-induced locomotor sensitization and addiction. Electronic supplementary material The online version of this article (doi:10.1186/s12868-015-0157-3) contains supplementary material, which is available to authorized users.
    BMC Neuroscience 03/2015; 16. DOI:10.1186/s12868-015-0157-3 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tripartite Rpd3/Sin3/Ume6 complex represses meiotic isoforms during mitosis. We asked if it also controls starvation-induced isoforms. We report that VTH1/VTH2 encode acetate-inducible isoforms with extended 5'-regions overlapping antisense long non-coding RNAs. Rpd3 and Ume6 repress the long isoform of VTH2 during fermentation. Cells metabolizing glucose contain Vth2, while the protein is undetectable in acetate and during sporulation. VTH2 is a useful model locus to study mechanisms implicating promoter directionality, lncRNA transcription and post-transcriptional control of gene expression via 5'-UTRs. Since mammalian genes encode transcript isoforms and Rpd3 is conserved, our findings are relevant for gene expression in higher eukaryotes. Copyright © 2015. Published by Elsevier B.V.

Full-text (2 Sources)

Available from
May 23, 2014