Synthetic physiology strategies for adapting tools from nature for genetically targeted control of fast biological processes.

Synthetic Neurobiology Group, The Media Laboratory and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Methods in enzymology (Impact Factor: 1.9). 01/2011; 497:425-43. DOI: 10.1016/B978-0-12-385075-1.00018-4
Source: PubMed

ABSTRACT The life and operation of cells involve many physiological processes that take place over fast timescales of milliseconds to minutes. Genetically encoded technologies for driving or suppressing specific fast physiological processes in intact cells, perhaps embedded within intact tissues in living organisms, are critical for the ability to understand how these physiological processes contribute to emergent cellular and organismal functions and behaviors. Such "synthetic physiology" tools are often incredibly complex molecular machines, in part because they must operate at high speeds, without causing side effects. We here explore how synthetic physiology molecules can be identified and deployed in cells, and how the physiology of these molecules in cellular contexts can be assessed and optimized. For concreteness, we discuss these methods in the context of the "optogenetic" light-gated ion channels and pumps that we have developed over the past few years as synthetic physiology tools and widely disseminated for use in neuroscience for probing the role of specific brain cell types in neural computations, behaviors, and pathologies. We anticipate that some of the insights revealed here may be of general value for the field of synthetic physiology, as they raise issues that will be of importance for the development and use of high-performance, high-speed, side-effect free physiological control tools in heterologous expression systems.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Channelrhodopsins serve as photoreceptors that control the motility behavior of green flagellate algae and act as light-gated ion channels when heterologously expressed in animal cells. Here, we report direct measurements of proton transfer from the retinylidene Schiff base in several channelrhodopsin variants expressed in HEK293 cells. A fast outward-directed current precedes the passive channel current that has the opposite direction at physiological holding potentials. This rapid charge movement occurs on the timescale of the M intermediate formation in microbial rhodopsins, including that for channelrhodopsin from Chlamydomonas augustae and its mutants, reported in this study. Mutant analysis showed that the glutamate residue corresponding to Asp(85) in bacteriorhodopsin acts as the primary acceptor of the Schiff-base proton in low-efficiency channelrhodopsins. Another photoactive-site residue corresponding to Asp(212) in bacteriorhodopsin serves as an alternative proton acceptor and plays a more important role in channel opening than the primary acceptor. In more efficient channelrhodopsins from Chlamydomonas reinhardtii, Mesostigma viride, and Platymonas (Tetraselmis) subcordiformis, the fast current was apparently absent. The inverse correlation of the outward proton transfer and channel activity is consistent with channel function evolving in channelrhodopsins at the expense of their capacity for active proton transport.
    Biophysical Journal 02/2013; 104(4):807-17. DOI:10.1016/j.bpj.2013.01.002 · 3.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optogenetics is a research field that uses gene therapy to deliver a gene encoding a light-activated protein to cells providing light-regulated control of targeted cell pathways. The technology is a popular tool in many fields of neuroscience, used to transiently switch cells on and off, for example, to map neural circuits. In inherited retinal degenerative diseases, where loss of vision results from the loss of photoreceptors, optogenetics can be applied to either augment the function of surviving photoreceptors or confer light sensitivity to naturally nonlight sensitive retinal cells, such as a bipolar cells. This can be achieved either by the light sensitive protein integrating with native internal signaling pathways, or by using a dual function membrane protein that integrates light signaling with an ion channel or pump activity. Exposing treated cells to light of the correct wavelength activates the protein, resulting in cellular depolarization or hyperpolarization that triggers neurological signaling to the visual cortex. While there is a lot of interest in optogenetics as a pan-disease clinical treatment for end-stage application in the inherited degenerative diseases of the retina, research to date has been limited to nonhuman clinical studies. To address the clinical translational needs of this technology, the Foundation Fighting Blindness and Massachusetts Eye and Ear Infirmary cohosted an International Optogenetic Therapies for Vision Workshop, which was held at Massachusetts Eye and Ear Infirmary, Boston, Massachusetts on June 1, 2012.
    11/2013; 2(7):4. DOI:10.1167/tvst.2.7.4
  • [Show abstract] [Hide abstract]
    ABSTRACT: To ascertain the potential pathogenicity of a retinitis pigmentosa (RP)-causing RHO F45L allele in a family affected by congenital achromatopsia (ACHM). Case series/observational study that included two patients with ACHM and 24 extended family members. Molecular genetic analysis was performed to identify RHO F45L carrier status in the family and a control population. An adaptive optics scanning light ophthalmoscope (AOSLO) was used to image the photoreceptor mosaic and assess rod and cone structure. Spectral domain optical coherence tomography (SD-OCT) was used to examine retinal lamination. Comprehensive clinical testing included acuity, color vision, and dilated fundus examination. Electroretinography was used to assess rod and cone function. Five carriers of the RHO F45L allele alone (24-80 years) and three carriers in combination with a heterozygous CNGA3 mutant allele (10-64 years) were all free of the classic symptoms and signs of RP. In heterozygous carriers of both mutations, SD-OCT showed normal retinal thickness and intact outer retinal layers; rod and cone densities were within normal limits on AOSLO. The phenotype in two individuals affected with ACHM and harboring the RHO F45L allele was indistinguishable from that previously reported for ACHM. The RHO F45L allele is not pathogenic in this large family; hence, the two ACHM patients would unlikely develop RP in the future. The combined approach of comprehensive molecular analysis of individual genomes and noninvasive cellular resolution retinal imaging enhances the current repertoire of clinical diagnostic tools, giving a substantial impetus to personalized medicine.
    02/2013; 2(2):4. DOI:10.1167/tvst.2.2.4