Article

Conditional disruption of mouse Klf5 results in defective eyelids with malformed meibomian glands, abnormal cornea and loss of conjunctival goblet cells

Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Developmental Biology (Impact Factor: 3.64). 05/2011; 356(1):5-18. DOI: 10.1016/j.ydbio.2011.05.005
Source: PubMed

ABSTRACT Members of the Krüppel-like family of transcription factors regulate diverse developmental processes in various organs. Previously, we have demonstrated the role of Klf4 in the mouse ocular surface. Herein, we determined the role of the structurally related Klf5, using Klf5-conditional null (Klf5CN) mice derived by mating Klf5-LoxP and Le-Cre mice. Klf5 mRNA was detected as early as embryonic day 12 (E12) in the cornea, conjunctiva and eyelids, wherein its expression increased during development. Though the embryonic eye morphogenesis was unaltered in the Klf5CN mice, postnatal maturation was defective, resulting in smaller eyes with swollen eyelids that failed to separate properly. Klf5CN palpebral epidermis was hyperplastic with 7-9 layers of keratinocytes, compared with 2-3 in the wild type (WT). Klf5CN eyelid hair follicles and sebaceous glands were significantly enlarged, and the meibomian glands malformed. Klf5CN lacrimal glands displayed increased vasculature and large number of infiltrating cells. Klf5CN corneas were translucent, thicker with defective epithelial basement membrane and hypercellular stroma. Klf5CN conjunctiva lacked goblet cells, demonstrating that Klf5 is required for conjunctival goblet cell development. The number of Ki67-positive mitotic cells was more than doubled, consistent with the increased number of Klf5CN ocular surface epithelial cells. Co-ablation of Klf4 and Klf5 resulted in a more severe ocular surface phenotype compared with Klf4CN or Klf5CN, demonstrating that Klf4 and Klf5 share few if any, redundant functions. Thus, Klf5CN mice provide a useful model for investigating ocular surface pathologies involving meibomian gland dysfunction, blepharitis, corneal or conjunctival defects.

0 Followers
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies.
    Cell Death & Disease 03/2015; 6(3):e1699. DOI:10.1038/cddis.2015.65 · 5.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next-generation sequencing of the transcriptome (RNA-Seq) is a powerful method that allows for the quantitative determination of absolute gene expression, and can be used to investigate how these levels change in response to an experimental manipulation or disease condition. The sensitivity of this method allows one to analyze transcript levels of all expressed genes, including low abundance transcripts that encode important regulatory molecules, providing valuable insights into the global effects of experimental manipulations. However, this increased sensitivity can also make it challenging to ascertain which expression changes are biologically significant. Here, we describe a novel set of filtering criteria - based on biological insights and computational approaches - that were applied to prioritize genes for further study from an extensive number of differentially expressed transcripts in lenses lacking Smad interacting protein 1 (Sip1) obtained via RNA-Seq by Manthey and colleagues in Mechanisms of Development (Manthey et al., 2014). Notably, this workflow allowed an original list of over 7,100 statistically significant differentially expressed genes (DEGs) to be winnowed down to 190 DEGs that likely play a biologically significant role in Sip1 function during lens development. Focusing on genes whose expression was upregulated or downregulated in a manner opposite to what normally occurs during lens development, we identified 78 genes that appear to be strongly dependent on Sip1 function. From these data (GEO accession number GSE49949), it appears that Sip1 regulates multiple genes in the lens that are generally distinct from those regulated by Sip1 in other cellular contexts, including genes whose expression is prominent in the early head ectoderm, from which the lens differentiates. Further, the analysis criteria outlined here represent a filtering scheme that can be used to prioritize genes in future RNA-Seq investigations performed at this stage of ocular lens development.
    12/2014; 2:369-374. DOI:10.1016/j.gdata.2014.10.015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KLF5 is a basic transcriptional factor that regulates multiple physiopathological processes. Our recent study showed that deletion of Klf5 in mouse prostate promotes tumorigenesis initiated by the deletion of Pten. While molecular characterization of Klf5-null tumors suggested that angiogenesis was partially responsible for tumor promotion, the precise function and mechanism of KLF5 deletion in prostate tumor angiogenesis remain unclear. Applying histological staining to Pten-null mouse prostates, we observed that deletion of Klf5 significantly increased the number of microvessels, accompanied by the upregulation of multiple angiogenesis-related genes based on microarray analysis with MetaCore software. In human umbilical vein endothelial cells (HuVECs), tube formation and migration, both of which are indicators of angiogenic activities, were decreased by conditioned media from PC-3 and DU 145 human prostate cancer cells with KLF5 overexpression, but increased by media from cells with KLF5 knockdown. HIF1α, a key angiogenesis inducer, was upregulated by KLF5 loss at the protein but not the mRNA level in both mouse tissues and human cell lines, as determined by immunohistochemical staining, real-time RT-PCR and Western blotting. Consistently, KLF5 loss also upregulated VEGF and PDGF, two pro-angiogenic mediators of HIF1α function, as analyzed by immunohistochemical staining in mouse tissues and ELISA in conditioned media. Mechanistically, AKT activity, which caused the accumulation of HIF1α, was increased by KLF5 knockout or knockdown but decreased by KLF5 overexpression. PI3K/AKT inhibitors consistently abolished the effects of KLF5 knockdown on angiogenic activity, HIF1α accumulation, and VEGF and PDGF expression. KLF5 loss enhances tumor angiogenesis by attenuating PI3K/AKT signaling and subsequent accumulation of HIF1α in PTEN deficient prostate tumors.
    Molecular Cancer 04/2015; 14(1):91. DOI:10.1186/s12943-015-0365-6 · 5.40 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
Jun 5, 2014