Article

Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay.

Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77033, USA.
Molecular cell (Impact Factor: 14.46). 05/2011; 42(4):500-10. DOI: 10.1016/j.molcel.2011.04.018
Source: PubMed

ABSTRACT Nonsense-mediated decay (NMD) degrades both normal and aberrant transcripts harboring stop codons in particular contexts. Mutations that perturb NMD cause neurological disorders in humans, suggesting that NMD has roles in the brain. Here, we identify a brain-specific microRNA-miR-128-that represses NMD and thereby controls batteries of transcripts in neural cells. miR-128 represses NMD by targeting the RNA helicase UPF1 and the exon-junction complex core component MLN51. The ability of miR-128 to regulate NMD is a conserved response occurring in frogs, chickens, and mammals. miR-128 levels are dramatically increased in differentiating neuronal cells and during brain development, leading to repressed NMD and upregulation of mRNAs normally targeted for decay by NMD; overrepresented are those encoding proteins controlling neuron development and function. Together, these results suggest the existence of a conserved RNA circuit linking the microRNA and NMD pathways that induces cell type-specific transcripts during development.

1 Bookmark
 · 
191 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonsense-mediated mRNA decay (NMD) is a ubiquitous mechanism of degradation of transcripts with a premature termination codon. NMD eliminates aberrant mRNA species derived from sources of genetic variation such as gene mutations, alternative splicing and DNA rearrangements in immune cells. In addition, recent data suggest that NMD is an important mechanism of global gene expression regulation. Here, we describe new reporters to quantify NMD activity at the single cell level using fluorescent proteins of two colors: green TagGFP2 and far-red Katushka. TagGFP2 was encoded by mRNA targeted to either the splicing-dependent or the long 3'UTR-dependent NMD pathway. Katushka was used as an expression level control. Comparison of the fluorescence intensities of cells expressing these reporters and cells expressing TagGFP2 and Katushka from corresponding control NMD-independent vectors allowed for the assessment of NMD activity at the single cell level using fluorescence microscopy and flow cytometry. The proposed reporter system was successfully tested in several mammalian cell lines and in transgenic Xenopus embryos.
    Scientific Reports 01/2015; 5:7729. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque.
    Mediators of Inflammation 01/2014; 2014:134635. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hedgehog (Hh) is a secreted morphogen that elicits differentiation and patterning in developing tissues. Multiple proposed mechanisms to regulate Hh dispersion includes lipoprotein particles and exosomes. Here we report that vertebrate Sonic Hedgehog (Shh) is secreted on two types of extracellular-vesicles/exosomes, from human cell lines and primary chick notochord cells. Although largely overlapping in size as estimated from electron micrographs, the two exosomal fractions exhibited distinct protein and RNA composition. We have probed the functional properties of these vesicles using cell-based assays of Hh-elicited gene expression. Our results suggest that while both Shh-containing exo-vesicular fractions can activate an ectopic Gli-luciferase construct, only exosomes co-expressing Integrins can activate endogenous Shh target genes HNF3β and Olig2 during the differentiation of mouse ES cells to ventral neuronal progenitors. Taken together, our results demonstrate that primary vertebrate cells secrete Shh in distinct vesicular forms, and support a model where packaging of Shh along with other signaling proteins such as Integrins on exosomes modulates target gene activation. The existence of distinct classes of Shh-containing exosomes also suggests a previously unappreciated complexity for fine-tuning of Shh-mediated gradients and pattern formation.
    Scientific Reports 12/2014; 4:7357. · 5.08 Impact Factor

Full-text (2 Sources)

Download
45 Downloads
Available from
Jun 10, 2014