Article

Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode.

Toxinology Laboratory, Oswaldo Cruz Institute (IOC), Fiocruz, Rio de Janeiro, Brazil.
Journal of proteomics (Impact Factor: 5.07). 05/2011; 74(9):1545-59. DOI:10.1016/j.jprot.2011.04.031
Source: PubMed

ABSTRACT Angiostrongylus costaricensis is a nematode helminth that causes an intestinal acute inflammatory process known as abdominal angiostrongyliasis, which is a poorly understood human disease occurring in Latin America. Our aim was to study the proteomic profiles of adult parasites focusing on immunogenic proteins. Total cellular extracts from both genders showed similar 2-DE profiles, with 60% of all protein spots focused between pH 5-7 and presenting molecular masses from 20.1 to 66 kDa. A total of 53 different dominant proteins were identified in our dataset and were mainly associated with the following over-represented Gene Ontology Biological Process terms: "macromolecule metabolic process", "developmental process", "response to stress", and "biological regulation". Female and male immunoblots showed similar patterns of reactive proteins. Immunoreactive spots identified by MALDI-PSD were found to represent heat shock proteins, a putative abnormal DAuer Formation family member, and galectins. To date, very few biochemical analyses have focused on the nematode Angiostrongylus costaricensis. As such, our results contribute to a better understanding of its biology and the mechanisms underlying the host-parasite relationship associated with this species. Moreover, our findings represent a first step in the search for candidate proteins for diagnostic assays and the treatment of this parasitic infection.

0 0
 · 
1 Bookmark
 · 
120 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.
    Parasitology 07/2012; 139(9):1103-18. · 2.36 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Angiostrongyliasis is an emerging communicable disease. Several different hosts are required to complete the life cycle of Angiostrongylus cantonensis. However, we lack a complete understanding of variability of proteins across different developmental stages and their contribution to parasite survival and progression. In this study, we extracted soluble proteins from various stages of the A. cantonensis life cycle [female adults, male adults, the fifth-stage female larvae (FL5), the fifth-stage male larvae (ML5) and third-stage larvae (L3)], separated those proteins using two-dimensional difference gel electrophoresis (2D-DIGE) at pH 4-7, and analyzed the gel images using DeCyder 7.0 software. This proteomic analysis produced a total of 183 different dominant protein spots. Thirty-seven protein spots were found to have high confidence scores (>95%) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Comparative proteomic analyses revealed that 29 spots represented cytoskeleton-associated proteins and functional proteins. Eight spots were unnamed proteins. Twelve protein spots that were matched to the EST of different-stage larvae of A. cantonensis were identified. Two genes and the internal control 18s were chosen for quantitative real-time PCR (qPCR) and the qPCR results were consistent with those of the DIGE studies. These findings will provide a new basis for understanding the characteristics of growth and development of A. cantonensis and the host-parasite relationship. They may also assist searches for candidate proteins suitable for use in diagnostic assays and as drug targets for the control of eosinophilic meningitis caused by A. cantonensis.
    PLoS ONE 01/2013; 8(10):e76982. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Angiostrongylus cantonensis is the most common infectious agent causing eosinophilic meningitis and is present in Taiwan, Thailand and the Pacific islands. Clinical symptoms vary within different endemic regions, and their severity is probably dependent on the number of ingested parasites and the diversity among strains. The experimentally definitive host is the rat, and non-permissive hosts are certain mammals such as humans and mice. In this study, the partial gene sequences of two A. cantonensis strains isolated from five different regions in Taiwan were selected and molecularly analyzed. The internal transcribed spacer gene and cytochrome-c oxidase subunit I gene sequences of the Hualien (H) strain of A. cantonensis differed from those of the Pingtung (P) strain and the other three strains by 19% and 11%, respectively. We analyzed the infectivity, fecundity, and development of the H and P strain in rats and host pathogenicity in mice inoculated with both strains. The number of the emerged first-stage larvae, adult recovery, and average length of adults in Sprague-Dawley rats significantly differed between rats inoculated with the H and P strain. Young adult recovery, average length of young adults, eosinophil counts in the cerebrospinal fluid (CSF), glutathione peroxidase concentration, levels of reactive oxygen species as well as malondialdehyde concentration in the CSF, and the survival of mice significantly differed between BALB/c mice inoculated with the H and P strain. The H strain of A. cantonensis had lower infectivity, delayed fecundity, and poor development in rats, and caused milder pathology and lower mortality in mice than the P strain. These data clearly indicate that the H strain of A. cantonensis is a pathogenically distinct strain with lower infectivity to its definitive host, and causing mild pathogenic symptoms to its non-permissive host.
    Acta tropica 02/2014; · 2.79 Impact Factor

Full-text (2 Sources)

View
75 Downloads
Available from
Feb 24, 2014