Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors

Laboratory of Molecular Hematopoiesis, University of Catanzaro Magna Græcia, Catanzaro, Italy.
Cell cycle (Georgetown, Tex.) (Impact Factor: 5.01). 07/2011; 10(13):2129-39. DOI: 10.4161/cc.10.13.16045
Source: PubMed

ABSTRACT Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord injury (SCI) is a traumatic event resulting in disturbances to normal sensory, motor, or autonomic functions, which ultimately impacts a patient's physical, psychological, and social well-being. Until now, no available therapy for SCI can effectively slow down or halt the disease progression. Compared to traditional treatments, e.g., medication, surgery, and functional electrical stimulation, stem cell replacement therapy shows high potential for repair and functional plasticity. Thus, stem cell therapy may provide a promising strategy in curative treatment of SCI, specifically when considering the requirement of neuron replenishment in the spinal cord after distinct acute injuries. However, the therapeutic application of neural stem cells (NSCs) still faces enormous challenges, such as ethical issues, possible inflammatory reactions, graft rejection, and tumor formation. Therefore, it is of vital interest to identify more suitable sources of cells with stem cell potential, which might potentially be harnessed for local neural repair. Due to abovementioned possible drawbacks, these cells should be autologous. Reprogramming of astrocytes to generate the desired neuronal cell types would open the door to autologous cell transplantation and treatment of SCI without possible severe side effects. In this paper, we review the relevant therapeutic strategies for SCI, and conversion of astrocyte into NSCs, suggesting this procedure as a possible treatment option.
    Molecular Neurobiology 04/2015; DOI:10.1007/s12035-015-9157-7 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms that regulate apoptosis in a temporal and lineage-specific manner remain poorly understood. The COE (Collier/Olf/EBF) transcription factors have been implicated in the development of many cell types, including neurons. Here, we show that the sole Caenorhabditis elegans COE protein, UNC-3, together with a histone acetyltransferase, CBP-1/P300, specifies lineage-specific apoptosis and certain aspects of neurite trajectory. During embryogenesis, the RID progenitor cell gives rise to the RID neuron and RID sister cell; the latter undergoes apoptosis shortly after cell division upon expression of the pro-apoptotic gene egl-1. We observe UNC-3 expression in the RID progenitor, and the absence of UNC-3 results in the failure of the RID lineage to express a Pegl-1::GFP reporter and in the survival of the RID sister cell. Lastly, UNC-3 interacts with CBP-1, and cbp-1 mutants exhibit a similar RID phenotype to unc-3. Thus, in addition to playing a role in neuronal terminal differentiation, UNC-3 is a cell lineage-specific regulator of apoptosis. © 2015. Published by The Company of Biologists Ltd.
    Development 03/2015; 142(8). DOI:10.1242/dev.119479 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
    PLoS ONE 12/2014; 9(12). DOI:10.1371/journal.pone.0114795. · 3.53 Impact Factor