Article

Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.

Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2011; 286(28):24626-37. DOI: 10.1074/jbc.M111.230375
Source: PubMed

ABSTRACT Riboswitches are RNA regulatory elements that govern gene expression by recognition of small molecule ligands via a high affinity aptamer domain. Molecular recognition can lead to active or attenuated gene expression states by controlling accessibility to mRNA signals necessary for transcription or translation. Key areas of inquiry focus on how an aptamer attains specificity for its effector, the extent to which the aptamer folds prior to encountering its ligand, and how ligand binding alters expression signal accessibility. Here we present crystal structures of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis in the preQ(1)-bound and free states. Although the mode of preQ(1) recognition is similar to that observed for preQ(0), surface plasmon resonance revealed an apparent K(D) of 2.1 ± 0.3 nm for preQ(1) but a value of 35.1 ± 6.1 nm for preQ(0). This difference can be accounted for by interactions between the preQ(1) methylamine and base G5 of the aptamer. To explore conformational states in the absence of metabolite, the free-state aptamer structure was determined. A14 from the ceiling of the ligand pocket shifts into the preQ(1)-binding site, resulting in "closed" access to the metabolite while simultaneously increasing exposure of the ribosome-binding site. Solution scattering data suggest that the free-state aptamer is compact, but the "closed" free-state crystal structure is inadequate to describe the solution scattering data. These observations are distinct from transcriptional preQ(1) riboswitches of the same class that exhibit strictly ligand-dependent folding. Implications for gene regulation are discussed.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Riboswitches often occur in the 5′-untranslated regions of bacterial mRNA where they regulate gene expression. The preQ1 riboswitch controls the biosynthesis of a hypermodified nucleoside queuosine in response to binding the queuosine metabolic intermediate. Structures of the ligand-bound and ligand-free states of the preQ1 riboswitch from Thermoanaerobacter tengcongensis were determined recently by X-ray crystallography. We used multiple, microsecond-long molecular dynamics simulations (29 μs in total) to characterize the structural dynamics of preQ1 riboswitches in both states. We observed different stabilities of the stem in the bound and free states, resulting in different accessibilities of the ribosome-binding site. These differences are related to different stacking interactions between nucleotides of the stem and the associated loop, which itself adopts different conformations in the bound and free states. We suggest that the loop not only serves to bind preQ1 but also transmits information about ligand binding from the ligand-binding pocket to the stem, which has implications for mRNA accessibility to the ribosome. We explain functional results obscured by a high salt crystallization medium and help to refine regions of disordered electron density, which demonstrates the predictive power of our approach. Besides investigating the functional dynamics of the riboswitch, we have also utilized this unique small folded RNA system for analysis of performance of the RNA force field on the μs time scale. The latest AMBER parmbsc0χOL3 RNA force field is capable of providing stable trajectories of the folded molecule on the μs time scale. On the other hand, force fields that are not properly balanced lead to significant structural perturbations on the sub-μs time scale, which could easily lead to inappropriate interpretation of the simulation data.
    The Journal of Physical Chemistry B 10/2012; 116(42):12721–12734. DOI:10.1021/jp309230v · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recent discovery that non-coding RNAs are considerably more abundant and serve a much wider range of critical cellular functions than recognized over previous decades of research into molecular biology has sparked a renewed interest in the study of structure-function relationships of RNA. To perform their functions in the cell, RNAs must dominantly adopt their native conformations, avoiding deep, non-productive kinetic traps that may exist along a frustrated (rugged) folding free energy landscape. Intracellularly, RNAs are synthesized by RNA polymerase and fold co-transcriptionally starting from the 5' end, sometimes with the aid of protein chaperones. By contrast, in the laboratory RNAs are commonly generated by in vitro transcription or chemical synthesis, followed by purification in a manner that includes the use of high concentrations of urea, heat and UV light (for detection), resulting in the denaturation and subsequent refolding of the entire RNA. Recent studies into the nature of heterogeneous RNA populations resulting from this process have underscored the need for non-denaturing (native) purification methods that maintain the co-transcriptional fold of an RNA. Here, we present protocols for the native purification of an RNA after its in vitro transcription and for fluorophore and biotin labeling methods designed to preserve its native conformation for use in single molecule fluorescence resonance energy transfer (smFRET) inquiries into its structure and function. Finally, we present methods for taking smFRET data and for analyzing them, as well as a description of plausible overall preparation schemes for the plethora of non-coding RNAs.
    Methods in Molecular Biology 01/2015; 1240:63-95. DOI:10.1007/978-1-4939-1896-6_6 · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously, two riboswitch classes have been identified that sense and respond to the hypermodified nucleobase called prequeuosine1 (preQ1). The enormous expansion of available genomic DNA sequence data creates new opportunities to identify additional representatives of the known riboswitch classes and to discover novel classes. We conducted bioinformatics searches on microbial genomic DNA data sets to discover numerous additional examples belonging to the two previously known riboswitch classes for preQ1 (classes preQ1-I and preQ1-II), including some structural variants that further restrict ligand specificity. Additionally, we discovered a third preQ1-binding riboswitch class (preQ1-III) that is structurally distinct from previously known classes. These findings demonstrate that numerous organisms monitor the concentrations of this modified nucleobase by exploiting one or more riboswitch classes for this widespread compound.
    Chemistry & Biology 07/2014; 21(7):880-9. DOI:10.1016/j.chembiol.2014.05.015 · 6.59 Impact Factor