Article

When is adult hippocampal neurogenesis necessary for learning? evidence from animal research.

Departamento de Psicobiología y Metodología de las CC, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain.
Reviews in the neurosciences (Impact Factor: 3.26). 01/2011; 22(3):267-83. DOI: 10.1515/RNS.2011.027
Source: PubMed

ABSTRACT The hippocampus is a key brain structure involved in the short- and long-term processing of declarative memory. Since adult hippocampal neurogenesis was first found, numerous studies have tried to establish the contribution of newborn neurons to hippocampus-dependent cognitive functions. However, this large amount of research has generated contradictory results. In this paper, we review the body of evidence investigating the relationship between hippocampal neurogenesis and learning to conclude the functional role of adult-born hippocampal neurons. First, factors that could explain discrepancies among experiments are taken into account. Then, in addition to methodological differences, we emphasize the importance of the age of the newborn neurons studied, as to how their maturation influences both their properties and potential functionality. Next, we discuss which declarative memory components could require involvement of adult hippocampal neurogenesis, taking into consideration the representational demands of the task, its difficulty and the level of performance reached by the subject. Finally, other factors that could modulate neurogenesis and memory, such as stress levels or previous experience of the animal, should also be taken into consideration in interpreting experiments focused on neurogenesis. In conclusion, our analysis of published studies suggests that new adult-born neurons, under certain circumstances, have a crucial and irreplaceable role in hippocampal learning.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVES: There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. METHODS: Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. RESULTS: The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. CONCLUSIONS: Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy and bipolar disorder/schizophrenia are strikingly similar.
    Bipolar Disorders 04/2013; · 4.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current pharmacological treatments for depression have a significant treatment-onset-response delay, an insufficient efficacy for many patients and fail to reverse cognitive dysfunction. Erythropoietin (EPO) has neuroprotective and neurotrophic actions and improves cognitive function in animal models of acute and chronic neurodegenerative conditions and in patients with cognitive decline. We systematically reviewed the published findings from animal and human studies exploring the potential of EPO to treat depression-related cognitive dysfunction and depression. We identified five animal studies (two in male rats, two in male mice and one in male rats and mice) and seven human proof-of-concept studies (five in healthy volunteers and two in depressed patients) that investigated the above. All of the reviewed animal studies but one and all human studies demonstrated beneficial effects of EPO on hippocampus-dependent memory and antidepressant-like effects. These effects appear to be mediated through direct neurobiological actions of EPO rather than upregulation of red cell mass. The reviewed studies demonstrate beneficial effects of EPO on hippocampus-dependent memory function and on depression-relevant behavior, thus highlighting EPO as a candidate agent for future management of cognitive dysfunction and mood symptoms in depression. Larger-scale clinical trials of EPO as a treatment for mood and neurocognitive symptoms in patients with mood disorder are therefore warranted.
    Psychopharmacology 09/2011; 219(3):687-98. · 4.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individual variation is the foundation for evolutionary change, but little is known about the nature of normal variation between brains. Phylogenetic variation across mammalian brains is characterized by high intercorrelations in brain region volumes, distinct allometric scaling for each brain region and the relative independence of olfactory and limbic structure volumes from the rest of the brain. Previous work examining brain variation in individuals of some domesticated species showed that these three features of phylogenetic variation were mirrored in individual variation. We extend this analysis to the human brain and 10 of its subdivisions (e.g., isocortex and hippocampus) by using magnetic resonance imaging scans of 90 human brains ranging between 16 and 25 years of age. Human brain variation resembles both the individual variation seen in other species and variation observed across mammalian species, i.e., the relative differences in the slopes of each brain region compared to medulla size within humans and between mammals are concordant, and limbic structures scale with relative independence from other brain regions. This nonrandom pattern of variation suggests that developmental programs channel the variation available for selection.
    Brain Behavior and Evolution 01/2013; · 2.89 Impact Factor