Article

Tomography-based customized IOL calculation model.

Medical Optics at the Institute of Medical Physics, University of Erlangen-Nuremberg, Erlangen, Germany.
Current eye research (Impact Factor: 1.51). 06/2011; 36(6):579-89. DOI: 10.3109/02713683.2011.566978
Source: PubMed

ABSTRACT To provide a mathematical calculation scheme for customized intraocular lens (IOL) design based on high resolution anterior segment optical coherence tomography (AS-OCT) of anterior eye segment and axial length data.
We use the corneal and anterior segment data from the high resolution AS-OCT and the axial length data from the IOLMaster to create a pseudophakic eye model. An inverse calculation algorithm for the IOL back surface optimization is introduced. We employ free form surface representation (bi-cubic spline) for the corneal and IOL surface. The merit of this strategy is demonstrated by comparing with a standard spherical model and quadratic function. Four models are calculated: (1) quadratic cornea + quadratic IOL; (2) spline cornea + quadratic IOL; (3) spline cornea + spline IOL; and (4) spherical cornea + spherical IOL. The IOL optimization process for the pseudophakic eye is performed by numerical ray-tracing method within a 6-mm zone. The spot diagram on the fovea (forward ray-tracing) and wavefront at the spectacle plane (backward ray-tracing) are compared for different models respectively.
The models with quadratic (1) or spline (3) surface representation showed superior image performance than the spherical model 4. The residual wavefront errors (peak to valley) of models 1, 2, and 3 are below one micron scale. Model 4 showed max wavefront error of about 15 µm peak to valley. However, the combination of quadratic best fit IOL with the free form cornea (model 2) showed one magnitude smaller wavefront error than the spherical representation of both surfaces (model 3). This results from higher order terms in cornea height profile.
A four-surface eye model using a numerical ray-tracing method is proposed for customized IOL calculation. High resolution OCT data can be used as a sufficient base for a customized IOL characterization.

0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. In order to establish inspection routines for individual intraocular lenses (IOLs), their surfaces have to be measured separately. Currently available measurement devices lack this functionality. The purpose of this study is to evaluate a new topography measurement device based on wavefront analysis for measuring individual regular and freeform IOL surfaces, the "WaveMaster Reflex UV" (Trioptics, Wedel, Germany). Methods. Measurements were performed on IOLs with increasingly complex surface geometries: spherical surfaces, surfaces modelled by higher-order Zernike terms, and freeform surfaces from biometrical patient data. Two independent parameters were measured: the sample's radius of curvature (ROC) and its residual (difference of sample topography and its best-fit sphere). We used a quantitative analysis method by calculating the residuals' root-mean-square (RMS) and peak-to-Valley (P2V) values. Results. The sample's best-fit ROC differences increased with the sample's complexity. The sample's differences of RMS values were 80 nm for spherical surfaces, 97 nm for higher-order samples, and 21 nm for freeform surfaces. Graphical representations of both measurement and design topographies were recorded and compared. Conclusion. The measurements of spherical surfaces expectedly resulted in better values than those of freeform surfaces. Overall, the wavefront analysing method proves to be an effective method for evaluating individual IOL surfaces.
    BioMed research international. 01/2013; 2013:363742.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hintergrund Die Abbildungsqualität asphärischer Intraokularlinsen (IOLs) ist stark abhängig von der Zentrierung im Auge. Aberrationskorrigierende IOLs der 2. Generation werden damit beworben, robuster gegenüber Dezentrierung zu sein. In dieser Studie wurde die Abbildungsqualität dieser IOLs bei Dezentrierung von bis zu 1 mm untersucht. Material und Methoden Zwei aberrationskorrigierende IOLs der 2. Generation wurden in einem Modellauge verglichen. Dazu wurden die Linsen bei 2 Pupillendurchmessern (3,0 und 4,5 mm) in 50-µm-Schritten in einem Bereich von ± 1,0 mm relativ zur Sehachse dezentriert und die Modulationstransferfunktion bestimmt. Anschließend wurden die Ergebnisse bei unterschiedlichen Ortsfrequenzen/Visusstufen verglichen. Ergebnisse Die untersuchten IOLs sind über einen Dezentrierungsbereich von −0,45 bis 0,60 mm (30 “cycles per degree“, CPD) für beide Pupillendurchmesser der sphärischen IOL überlegen. Besonders bei großer Pupille zeigen beide IOLs ihre Robustheit gegenüber Dezentrierung. Schlussfolgerung Die beiden IOLs zeigen bei Dezentrierung eine geringe Abschwächung der Abbildungsqualität und tolerieren Dezentrierungen in einem größeren Bereich als asphärische IOLs der 1. Generation.
    Der Ophthalmologe 03/2012; 109(3). · 0.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Manufacturing spherical, aspheric, and freeform surfaces requires testing throughout the development and production process. State-of-the-art topography measurement is limited in applicability for intraocular lenses (IOLs), and there is no dedicated commercial surface measurement system available for freeform IOLs. The purpose of this work was to validate a deflectometric setup for surface measurement, detection of defects, and shape fidelity analysis for the development and production of IOLs. The setup is based on a phase measuring deflectometer with a field-of-view of 80 mm×80 mm and a mean repetition accuracy of 1.6·10<sup>-3</sup> D. The technique is suitable for detection of global and local surface errors, extracted from geometry and topography analysis. For validation according to DIN ISO 5725:2002, spherical IOLs with radii of curvature of 10 and 20 mm, a commercial aspheric IOL, and single-sided freeform IOL samples were used.
    Applied Optics 06/2013; 52(18):4279-4286. · 1.69 Impact Factor