Association of PPP2CA polymorphisms with systemic lupus erythematosus susceptibility in multiple ethnic groups.

David Geffen School of Medicine, Department of Medicine, University of California, Los Angeles, CA 90095-1670, USA.
Arthritis & Rheumatology (Impact Factor: 7.87). 05/2011; 63(9):2755-63. DOI: 10.1002/art.30452
Source: PubMed

ABSTRACT T cells from patients with systemic lupus erythematosus (SLE) express increased amounts of PP2Ac, which contributes to decreased production of interleukin-2 (IL-2). Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
We conducted a trans-ethnic study of 8,695 SLE cases and 7,308 controls of 4 different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time polymerase chain reaction.
A 32-kb haplotype comprising multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans, European Americans, and Asians, but not in African Americans. Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, European American, and Hispanic American populations (odds ratio 1.3 [95% confidence interval 1.14-1.31], meta-analysis P=3.8×10(-7)). In European Americans, the largest ethnic data set studied, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-double-stranded DNA, and anti-RNP antibodies. PPP2CA expression was ∼2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying the GG genotype (P=0.007).
Our data provide the first evidence of an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in European Americans, Hispanic Americans, and Asians.


Available from: Juan-Manuel Anaya, May 22, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphatase 2A (PP2A) is a highly conserved and ubiquitous serine/threonine phosphatase. We have previously shown that PP2A expression is increased in T cells of SLE patients and this increased expression and activity of PP2A plays a central role in the molecular pathogenesis of SLE. Although the control of PP2A expression has been the focus of many studies, many aspects of its regulation still remain poorly understood. In this study, we describe a novel mechanism of PP2A regulation. We propose that the transcription factor Ikaros binds to a variant site in the first intron of PP2A and modulates its expression. Exogenous expression of Ikaros leads to reduced levels of PP2Ac message as well as protein. Conversely, siRNA enabled silencing of Ikaros enhances the expression of PP2A, suggesting that Ikaros acts as a suppressor of PP2A expression. ChIP analysis further proved that Ikaros is recruited to this site in T cells. We also attempt to delineate the mechanism of Ikaros mediated PP2Ac gene suppression. We show that Ikaros mediated suppression of PP2A expression is at least partially dependent on the recruitment of the histone deacetylase HDAC1 to this intronic site. We conclude that the transcription factor Ikaros can regulate the expression of PP2A by binding to a site in the first intron and modulating chromatin modifications at this site via recruitment of HDAC1.
    Journal of Biological Chemistry 04/2014; 289(20). DOI:10.1074/jbc.M114.558197 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA-155 is involved in immune cell, differentiation, maturation and function. MiR-155 showed variable dysregulated expression in autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) patients. MiR-155 was previously confirmed to directly target CAMP response element binding protein (CREB), which was previously identified as a positive regulator of protein phosphatase 2A (PP2A). PP2A is a key negative regulator of interleukin-2, which is an important immune modulator and was previously shown to be decreased in SLE. In this study we aimed at investigating the regulation of PP2A by miR-155 and hence its role in juvenile SLE disease pathogenesis. MiR-155 showed significant downregulation in PBMCs from juvenile SLE and juvenile familial Mediterranean fever (FMF) and significant upregulation in PBMCs from juvenile idiopathic arthritis (JIA) patients. In SLE, miR-155 expression was negatively correlated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score and proteinuria and was positively correlated with white blood cell (WBC) count. The mRNA of the catalytic subunit of PP2A (PP2Ac) showed significant upregulation in PBMCs from SLE and FMF but not in JIA patients. Additionally, the relative expression of PP2Ac mRNA was positively correlated with SLEDAI score. Forced expression of miR-155 led to decreased relative expression of PP2Ac mRNA and increased IL-2 release in cultured-stimulated PBMCs. This study suggests for the first time the possible role of an miR-155-PP2Ac loop in regulating IL-2 release and identifies miR-155 as a potential therapeutic target in juvenile SLE disease through relieving IL-2 from the inhibitory role of PP2A.
    Lupus 09/2014; 24(3). DOI:10.1177/0961203314552117 · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reasons for the ethnic disparities in the prevalence of systemic lupus erythematosus (SLE) and the relative high frequency of SLE risk alleles in the population are not fully understood. Population genetic factors such as natural selection alter allele frequencies over generations and may help explain the persistence of such common risk variants in the population and the differential risk of SLE. In order to better understand the genetic basis of SLE that might be due to natural selection, a total of 74 genomic regions with compelling evidence for association with SLE were tested for evidence of recent positive selection in the HapMap and HGDP populations, using population differentiation, allele frequency, and haplotype-based tests. Consistent signs of positive selection across different studies and statistical methods were observed at several SLE-associated loci, including PTPN22, TNFSF4, TET3-DGUOK, TNIP1, UHRF1BP1, BLK, and ITGAM genes. This study is the first to evaluate and report that several SLE-associated regions show signs of positive natural selection. These results provide corroborating evidence in support of recent positive selection as one mechanism underlying the elevated population frequency of SLE risk loci and supports future research that integrates signals of natural selection to help identify functional SLE risk alleles.
    01/2014; 2014:203435. DOI:10.1155/2014/203435