Highly efficient hydrogen storage with PdAg nanotubes.

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
Nanoscale (Impact Factor: 6.74). 06/2011; 3(6):2476-80. DOI: 10.1039/c1nr10186b
Source: PubMed

ABSTRACT Hydrogen storage is one of the vital and challenging issues for the commercialization of hydrogen-powered fuel cells. In this report, the synthesized PdAg nanotubes exhibit enhanced hydrogen-storage ability. The highest capacity for hydrogen absorption obtained on the PdAg nanotubes with 15% of Pd was over 200 times greater than the pure Pd nanoparticles.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triple-layered Ag@Co@Ni core-shell nanoparticles (NPs) containing a silver core, a cobalt inner shell, and a nickel outer shell were formed by an in situ chemical reduction method. The thickness of the double shells varied with different cobalt and nickel contents. Ag0.04 @Co0.48 @Ni0.48 showed the most distinct core-shell structure. Compared with its bimetallic core-shell counterparts, this catalyst showed higher catalytic activity for the hydrolysis of NH3 BH3 (AB). The synergetic interaction between Co and Ni in Ag0.04 @Co0.48 @Ni0.48 NPs may play a critical role in the enhanced catalytic activity. Furthermore, cobalt-nickel double shells surrounding the silver core in the special triple-layered core-shell structure provided increasing amounts of active sites on the surface to facilitate the catalytic reaction. These promising catalysts may lead to applications for AB in the field of fuel cells.
    Chemistry - A European Journal 12/2013; · 5.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.
    Nanoscale 11/2011; 3(11):4824-9. · 6.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.
    Nanoscale 04/2013; · 6.74 Impact Factor