MCP-1 upregulates amylin expression in murine pancreatic β cells through ERK/JNK-AP1 and NF-κB related signaling pathways independent of CCR2. PLoS One 6:e19559

University of Padova, Medical School, Italy
PLoS ONE (Impact Factor: 3.23). 05/2011; 6(5):e19559. DOI: 10.1371/journal.pone.0019559
Source: PubMed

ABSTRACT Amylin is the most abundant component of islet amyloid implicated in the development of type 2 diabetes. Plasma amylin levels are elevated in individuals with obesity and insulin resistance. Monocyte chemoattractant protein-1 (MCP-1, CCL2) is involved in insulin resistance of obesity and type 2 diabetes. We investigated the effect of MCP-1 on amylin expression and the underlying mechanisms with murine pancreatic β-cell line MIN6 and pancreatic islets.
We found that MCP-1 induced amylin expression at transcriptional level and increased proamylin and intermediate forms of amylin at protein level in MIN6 cells and islets. However, MCP-1 had no effect on the expressions of proinsulin 1 and 2, as well as prohormone convertase (PC) 1/3 and PC2, suggesting that MCP-1 specifically induces amylin expression in β-cells. Mechanistic studies showed that although there is no detectable CCR2 mRNA in MIN6 cells and islets, pretreatment of MIN6 cells with pertussis toxin inhibited MCP-1 induced amylin expression, suggesting that alternative Gi-coupled receptor(s) mediates the inductive effect of MCP-1. MCP-1 rapidly induced ERK1/2 and JNK phosphorylation. Inhibitors for MEK1/2 (PD98059), JNK (SP600125) or AP1 (curcumin) significantly inhibited MCP-1-induced amylin mRNA expression. MCP-1 failed to induce amylin expression in pancreatic islets isolated from Fos knockout mice. EMSA showed that JNK and ERK1/2 were involved in MCP-1-induced AP1 activation. These results suggest that MCP-1 induces murine amylin expression through AP1 activation mediated by ERK1/2 or JNK. Further studies showed that treatment of MIN6 cells with NF-κB inhibitor or overexpression of IκBα dominant-negative construct in MIN6 cells significantly inhibited MCP-1-induced amylin expression, suggesting that NF-κB related signaling also participates in MCP-1-induced murine amylin expression.
MCP-1 induces amylin expression through ERK1/2/JNK-AP1 and NF-κB related signaling pathways independent of CCR2. Amylin upregulation by MCP-1 may contribute to elevation of plasma amylin in obesity and insulin resistance.

Download full-text


Available from: Juan Chen, May 12, 2015
12 Reads
  • Source
    • "Curcumin was cytoprotective for pancreatic islet cells via inhibition of islet apoptosis, as it inhibited inflammatory cytokines and oxidative stress [15-17]. Curcumin induced heme oxygenase (HO)-1 synthesis, which enhanced cAMP synthesis to stimulate insulin release [18,19], and inhibited JNK, which was a signaling molecule linking inflammation to insulin resistance [20]. Curcumin significantly increased transcription factor 7-like 2 (TCF7L2) gene expression, which played a role in insulin release in pancreatic islets [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperglycemia induces activation of the c-Jun N-terminal kinase (JNK) pathway, which suppresses insulin gene expression and reduces DNA binding of pancreatic and duodenal homeobox factor (PDX)-1. This study aims to investigate the effects of a novel curcumin derivative (NCD) on JNK signaling pathway on insulin synthesis and secretion in streptozotocin (STZ)-treated rat pancreatic islets in vitro. Isolated rat pancreatic islets were divided into five groups: untreated control group; group treated with NCD (10 muM); group exposed to STZ (5 mM); group treated with NCD (10 muM) and then exposed to STZ (5 mM); and group exposed to STZ (5 mM) and then treated with NCD (10 muM). The pancreatic islets from all groups were used for DNA fragmentation assays and quantitative assessments of the JNK, Pdx1, glucose transporter-2 (GLUT2), heme oxygenase (HO)-1, transcription factor 7-like 2 (TCF7L2), and glucagon-like peptide (GLP)-1 gene expression levels. The intracellular calcium, zinc, and the phosphorylated and total JNK protein levels were assessed. The insulin (secreted/total) and C-peptide levels were examined in islet culture medium. NCD protected pancreatic islets against STZ-induced DNA damage, improved total insulin (P = 0.001), secreted insulin (P = 0.001), and C-peptide levels (P = 0.001), normalized mRNA expressions of insulin, Pdx1, and GLUT2 (P = 0.0001), and significantly elevated calcium and zinc levels (P = 0.0001). All effects were significant when islets were treated with NCD before STZ (P = 0.05). JNK gene overexpression and JNK protein levels induced by STZ were significantly inhibited after NCD treatment of islets ( P = 0.0001). NCD-treated islets showed significantly elevated gene expressions of HO-1, TCF7L2, and GLP-1 (P = 0.0001), and these upregulated gene expressions were more significantly elevated with NCD treatment before STZ than after STZ (P = 0.05). NCD improved insulin synthesis and secretion in vitro in isolated pancreatic islets treated with STZ through inhibition of the JNK pathway, up-regulation of the gene expressions of HO-1, TCF7L2, and GLP-1 and enhancing effects on calcium and zinc levels.
    Chinese Medicine 01/2014; 9(1):3. DOI:10.1186/1749-8546-9-3 · 1.49 Impact Factor
  • Source
    • "The activation of the NF-κB-iNOS-NO signaling pathway has been reported to lead to the cytotoxicity and apoptosis in β-cells in both type 1 and type 2 diabetes [40], [41]. In unstimulated cells, the NF-κB heterodimers are retained in the cytoplasm by a family of inhibitors, called IκBs. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating clinical evidence suggests that hyperuricemia is associated with an increased risk of type 2 diabetes. However, it is still unclear whether elevated levels of uric acid can cause direct injury of pancreatic β-cells. In this study, we examined the effects of uric acid on β-cell viability and function. Uric acid solution or normal saline was administered intraperitoneally to mice daily for 4 weeks. Uric acid-treated mice exhibited significantly impaired glucose tolerance and lower insulin levels in response to glucose challenge than did control mice. However, there were no significant differences in insulin sensitivity between the two groups. In comparison to the islets in control mice, the islets in the uric acid-treated mice were markedly smaller in size and contained less insulin. Treatment of β-cells in vitro with uric acid activated the NF-κB signaling pathway through IκBα phosphorylation, resulting in upregulated inducible nitric oxide synthase (iNOS) expression and excessive nitric oxide (NO) production. Uric acid treatment also increased apoptosis and downregulated Bcl-2 expression in Min6 cells. In addition, a reduction in insulin secretion under glucose challenge was observed in the uric acid-treated mouse islets. These deleterious effects of uric acid on pancreatic β-cells were attenuated by benzbromarone, an inhibitor of uric acid transporters, NOS inhibitor L-NMMA, and Bay 11-7082, an NF-κB inhibitor. Further investigation indicated that uric acid suppressed levels of MafA protein through enhancing its degradation. Collectively, our data suggested that an elevated level of uric acid causes β-cell injury via the NF-κB-iNOS-NO signaling axis.
    PLoS ONE 10/2013; 8(10):e78284. DOI:10.1371/journal.pone.0078284 · 3.23 Impact Factor
  • Source
    • "ERK1/2 responds to stimulation by a variety of different hormones, growth factors, and insulin [18,25-27] and mediates diverse functions including modulation of proliferation, differentiation, apoptosis, migration, and cell adhesion [28-31]. Aberrations in ERK1/2 signaling have been previously reported to occur in a wide range of pathologies including cancer, diabetes, viral infection, and cardiovascular disease [32,33]. In SCD, abnormal ERK1/2 phosphorylation and subsequent activation is involved in increased phosphorylation of SS RBC adhesion molecule ICAM-4, mediating RBC adhesion to the endothelium, the phenotypic hallmark of this disease [18]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background In sickle cell disease (SCD), the mitogen-activated protein kinase (MAPK) ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs). ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown. Results To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2. Conclusions These findings expand upon the current model for the involvement of ERK1/2 signaling in RBCs. These findings also identify additional protein targets of this pathway other than the RBC adhesion molecule ICAM-4 and enhance the understanding of the mechanism of small molecule inhibitors of MEK/1/2/ERK1/2, which could be effective in ameliorating RBC hemorheology and adhesion, the hallmarks of SCD.
    Clinical Proteomics 01/2013; 10(1):1. DOI:10.1186/1559-0275-10-1
Show more