Article

Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation.

Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003, China.
Experimental Cell Research (Impact Factor: 3.37). 07/2011; 317(12):1714-25. DOI: 10.1016/j.yexcr.2011.05.001
Source: PubMed

ABSTRACT Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

0 Followers
 · 
186 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis continues to be a major health problem worldwide due to lack of effective therapy. If the etiology cannot be eliminated, liver fibrosis progresses to cirrhosis and eventually to liver failure or malignancy; both are associated with a fatal outcome. Liver transplantation, the only curative therapy, is still mostly unavailable. Liver fibrosis was shown to be a reversible process; however, complete reversibility remains debatable. Recently, the molecular markers of liver fibrosis were shown to be transmitted across generations. Epigenetic mechanisms including DNA methylation, histone posttranslational modifications and noncoding RNA have emerged as major determinants of gene expression during liver fibrogenesis and carcinogenesis. Furthermore, epigenetic mechanisms have been shown to be transmitted through mitosis and meiosis to daughter cells and subsequent generations. However, the exact epigenetic regulation of complete liver fibrosis resolution and inheritance has not been fully elucidated. This communication will highlight the recent advances in the search for delineating the mechanisms governing resolution of liver fibrosis and the potential for multigenerational and transgenerational transmission of fibrosis markers. The fact that epigenetic changes, unlike genetic mutations, are reversible and can be modulated pharmacologically underscores the unique opportunity to develop effective therapy to completely reverse liver fibrosis, to prevent the development of malignancy and to regulate heritability of fibrosis phenotype.
    05/2015; 21(17):5138-48. DOI:10.3748/wjg.v21.i17.5138
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment (TME), are a key source of extracellular matrix (ECM) that constitutes the desmoplastic stroma. Through remodeling of the reactive tumor stroma and paracrine actions, CAFs regulate cancer initiation, progression, and metastasis, as well as tumor resistance to therapies. The CAFs found in stroma-rich primary hepatocellular carcinomas (HCCs) and liver metastases of primary cancers of other organs predominantly originate from hepatic stellate cells (HSTCs), which are pericytes associated with hepatic sinusoids. During tumor invasion, HSTCs transdifferentiate into myofibroblasts in response to paracrine signals emanating from either tumor cells or a heterogenous cell population within the hepatic tumor microenvironment. Mechanistically, HSTC-to- myofibroblast transdifferentiation, also known as, HSTC activation, requires cell surface receptor activation, intracellular signal transduction, gene transcription and epigenetic signals, which combined ultimately modulate distinct gene expression profiles that give rise to and maintain a new phenotype. The current review, defines a paradigm that explains how HSTCs are activated into CAFs to promote liver metastasis. Furthermore, focus on the most relevant intracellular signaling networks and epigenetic mechanisms that control HSTC activation is provided. Finally, we discuss the feasibility of targeting CAF/activated HSTCs, in isolation or in conjunction with targeting cancer cells, which constitutes a promising and viable therapeutic approach for the treatment of primary stroma-rich liver cancers and liver metastasis. Copyright © 2014, American Association for Cancer Research.
    Molecular Cancer Research 12/2014; 13(4). DOI:10.1158/1541-7786.MCR-14-0542 · 4.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis.
    Pharmaceutical Research 09/2014; 32(2). DOI:10.1007/s11095-014-1497-x · 3.95 Impact Factor

Preview

Download
5 Downloads
Available from