Article

Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation.

Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, No.415 Fengyang Road, Shanghai 200003, China.
Experimental Cell Research (Impact Factor: 3.56). 07/2011; 317(12):1714-25. DOI: 10.1016/j.yexcr.2011.05.001
Source: PubMed

ABSTRACT Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.

0 Bookmarks
 · 
139 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: microRNAs are small noncoding RNAs which regulate gene expression at the posttranscriptional level by inducing mRNA degradation or translational repression. microRNA-dependent modulation of the extracellular matrix and its cellular receptors has emerged as a novel mechanism of regulating numerous matrix-dependent processes, including cell proliferation and apoptosis, cell adhesion and migration, cell differentiation and stem cell properties. In this review, we will present different mechanisms by which microRNAs and extracellular matrix constituents mutually regulate their expression, and we will demonstrate how these expression changes affect cell behaviour. We will also highlight the importance of dysregulated matrix-related microRNA expression for the pathogenesis of inflammatory and malignant disease, and discuss the potential for diagnostic and therapeutic applications. microRNAs and matrix-dependent signal transduction processes form novel regulatory circuits, which profoundly affect cell behaviour. As misexpression of microRNAs targeting extracellular matrix constituents is observed in a variety of diseases, a pharmacological intervention with these processes has therapeutic potential, as successfully demonstrated in vitro and in advanced animal models. However, a deeper mechanistic understanding is required to address potential side effects prior to clinical applications in humans. A full understanding of the role and function of microRNA-dependent regulation of the extracellular matrix may lead to new targeted therapies and new diagnostics for malignant and inflammatory diseases in humans. This article is part of a Special Issue entitled Matrix-Mediated Cell Behavior and Properties.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs are a class of small non-coding RNAs involved in the transcriptional and post-transcriptional regulation of gene expression. The function of miRNAs in liver disease including hepatocellular carcinoma (HCC), hepatitis, and alcoholic liver disease, have been widely studied and extensively reviewed. Increasing evidence demonstrates that miRNAs also play a critical role in normal liver development and in the fine-tuning of fundamental biological liver processes. In this review we highlight the most recent findings on the role of miRNAs in liver specification and differentiation, liver cell development, as well as in the many metabolic functions of the liver, including glucose, lipid, iron, and drug metabolism. These findings demonstrate an important role of miRNAs in normal liver development and function. Further researches will be needed to fully understand how miRNAs regulate liver generation and metabolic function, which should then lead to greater insights in liver biology and perhaps open up the possibility to correct errors that cause liver diseases or metabolic disorders. This article is protected by copyright. All rights reserved.
    Liver international: official journal of the International Association for the Study of the Liver 02/2014; · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the process of hepatic fibrosis, hepatic stellate cells (HSCs) can be activated by many inflammatory cytokines. The transforming growth factor-beta1 (TGF-beta1) is one of the main profibrogenic mediators. Recently, some studies have also shown that microRNAs (miRNAs) play essential roles in the progress of liver fibrosis by being involved in the differentiation, fat metabolism and ECM production of HSCs. The expression of miR-454 in LX-2 cells treated with TGF-beta1 and in the fibrotic livers with Schistosoma japonicum infection was detected by qRT-PCR. The role of miR-454 on LX-2 cells was then analyzed by Western blot, flow cytometry and luciferase assay. The results showed that the expression of miR-454 was down-regulated in the TGF-beta1-treated LX-2 cells and miR-454 could inhibit the activation of HSCs by directly targeting Smad4. However, we found that miR-454 had no effect on cell cycle and cell proliferation in TGF-beta1-treated LX-2. Besides these, miR-454 was found to be regulated in the process of Schistosoma japonicum infection. All the results suggested that miR-454 could provide a novel therapeutic approach for treating liver fibrosis, especially the liver fibrosis induced by Schistosoma japonicum.
    Parasites & Vectors 03/2014; 7(1):148. · 3.25 Impact Factor

Full-text

View
3 Downloads
Available from