Article

A fine balance between CCNL1 and TIMP1 contributes to the development of breast cancer cells

College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, PR China.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 06/2011; 409(2):344-9. DOI: 10.1016/j.bbrc.2011.05.021
Source: PubMed

ABSTRACT Cyclin L1 (CCNL1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP1) are candidate genes involved in several types of cancer. However, the expression of CCNL1 and the relationship between CCNL1 and TIMP1 in breast cancer cells is unknown. Using patients' breast cancer tissues, the expression of CCNL1 and TIMP1 was measured by cDNA microarray and further confirmed by real-time RT-PCR and western blotting. Overexpression or repression of CCNL1 and TIMP1, individually or together, was performed in breast cancer MDA-MB-231 cells by transient transformation methods to investigate their role in breast cancer cell growth. Simultaneously, mRNA and protein expression levels of CCNL1 and TIMP1 were also measured. CCNL1 and TIMP1 expression was significantly elevated in breast cancer tissues compared with that in peri-breast cancer tissues of patients by cDNA microarray and these results were further confirmed by real-time RT-PCR and western blotting. Interestingly, in vitro experiments showed a stimulatory effect of TIMP1 and an inhibitory effect of CCNL1 on growth of MDA-MB-231 cells. Co-expression or co-repression of these two genes did not affect cell growth. Overexpression of CCNL1 and TIMP1 individually induced overexpression of each other. These data demonstrate that there is a fine balance between CCNL1 and TIMP1, which may contribute to breast cancer development.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eating disorders (EDs) are common, complex psychiatric disorders thought to be caused by both genetic and environmental factors. They share many symptoms, behaviors, and personality traits, which may have overlapping heritability. The aim of the present study is to perform a genome-wide association scan (GWAS) of six ED phenotypes comprising three symptom traits from the Eating Disorders Inventory 2 [Drive for Thinness (DT), Body Dissatisfaction (BD), and Bulimia], Weight Fluctuation symptom, Breakfast Skipping behavior and Childhood Obsessive-Compulsive Personality Disorder trait (CHIRP). Investigated traits were derived from standardized self-report questionnaires completed by the TwinsUK population-based cohort. We tested 283,744 directly typed SNPs across six phenotypes of interest in the TwinsUK discovery dataset and followed-up signals from various strata using a two-stage replication strategy in two independent cohorts of European ancestry. We meta-analyzed a total of 2,698 individuals for DT, 2,680 for BD, 2,789 (821 cases/1,968 controls) for Bulimia, 1,360 (633 cases/727 controls) for Childhood Obsessive-Compulsive Personality Disorder trait, 2,773 (761 cases/2,012 controls) for Breakfast Skipping, and 2,967 (798 cases/2,169 controls) for Weight Fluctuation symptom. In this GWAS analysis of six ED-related phenotypes, we detected association of eight genetic variants with P < 10(-5) . Genetic variants that showed suggestive evidence of association were previously associated with several psychiatric disorders and ED-related phenotypes. Our study indicates that larger-scale collaborative studies will be needed to achieve the necessary power to detect loci underlying ED-related traits. © 2012 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 10/2012; 159B(7):803-11. DOI:10.1002/ajmg.b.32087 · 3.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IDH2 encodes a mitochondrial metabolic enzyme that converts isocitrate to α-ketoglutarate (α-KG) by reducing nicotinamide adenine dinucleotide phosphate (NADP(+)) to NADPH and participates in the citric acid cycle for energy production. Notably, this gene has been shown to be critical for cell proliferation. The abnormal expression of IDH2 has been reported in several types of cancer, and mutations in IDH2 have been identified in gliomas and acute myelogenous leukemia. The overexpression of IDH2 has been reported in endometrial, prostate and testicular cancer as well as in Kashin-Beck disease. In this study, we observed that IDH2 expression was significantly downregulated in early phase but was upregulated in advanced phase colon carcinoma compared to peritumoral tissues. In addition, we demonstrated that the growth of a colon carcinoma cell line was inhibited by IDH2-siRNA and increased following transfection with an IDH2-overexpressing plasmid. These results indicate that IDH2 may play a unique role in the development of colon carcinoma.
    Experimental and therapeutic medicine 11/2012; 4(5):801-806. DOI:10.3892/etm.2012.676 · 0.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue inhibitor of metalloproteinase 1 (TIMP-1) is a protein with a potential biological role in drug resistance. To elucidate the unknown molecular mechanisms underlying the association between high TIMP-1 levels and increased chemotherapy resistance, we employed SILAC-based quantitative mass spectrometry to analyze global proteome and phosphoproteome differences of MCF-7 breast cancer cells expressing high or low levels of TIMP-1. In TIMP-1 high expressing cells, 312 proteins and 452 phosphorylation sites were up-regulated. Among these were the cancer drug targets topoisomerase 1, 2A and 2B, which may explain the resistance phenotype to topoisomerase inhibitors that was observed in cells with high TIMP-1 levels. Pathway analysis showed an enrichment of proteins from functional categories such as apoptosis, cell cycle, DNA repair, transcription factors, drug targets and proteins associated with drug resistance or sensitivity and drug transportation. The NetworKIN algorithm predicted the protein kinases CK2a, CDK1, PLK1 and ATM as likely candidates involved in the hyper-phosphorylation of the topoisomerases. Up-regulation of protein and/or phosphorylation levels of topoisomerases in TIMP-1 high expressing cells may be part of the mechanisms by which TIMP-1 confers resistance to treatment with the widely-used topoisomerase inhibitors in breast- and colorectal cancer.
    Journal of Proteome Research 08/2013; 12(9). DOI:10.1021/pr400457u · 5.00 Impact Factor
Show more