Chromosomal copy number alterations are associated with tumor response to chemoradiation in locally advanced rectal cancer

Department of Surgery, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
Genes Chromosomes and Cancer (Impact Factor: 3.84). 09/2011; 50(9):689-99. DOI: 10.1002/gcc.20891
Source: PubMed

ABSTRACT Rectal cancer response to chemoradiation (CRT) varies from no response to a pathologic complete response (pCR). Identifying predictive biomarkers of response would therefore be useful. We assessed whether chromosomal copy number alterations (CNAs) can assist in predicting pCR. Pretreatment tumor biopsies and paired normal surgical tissues from the proximal resection margin were collected from 95 rectal cancer patients treated with preoperative CRT and total mesorectal excision in a prospective Phase II study. Tumor and control DNA were extracted, and oligonucleotide array-based comparative genomic hybridization (aCGH) was used to identify CNAs, which were correlated with pCR. Ingenuity pathway analysis (IPA) was then used to identify functionally relevant genes in aberrant regions. Finally, a predictive model for pCR was built using support vector machine (SVM), and leave-one-out cross validation assessed the accuracy of aCGH. Chromosomal regions most commonly affected by gains were 20q11.21-q13.33, 13q11.32-23, 7p22.3-p22.2, and 8q23.3-q24.3, and losses were present at 18q11.32-q23, 17p13.3-q11.1, 10q23.1, and 4q32.1-q32.3. The 25 (26%) patients who achieved a pCR had significantly fewer high copy gains overall than non-pCR patients (P = 0.01). Loss of chromosomal region 15q11.1-q26.3 was significantly associated with non-pCR (P < 0.00002; Q-bound < 0.0391), while loss of 12p13.31 was significantly associated with pCR (P < 0.0003; Q-bound < 0.097). IPA identified eight genes in the imbalanced chromosomal regions that associated with tumor response. SVM identified 58 probes that predict pCR with 76% sensitivity, 97% specificity, and positive and negative predictive values of 91% and 92%. Our data indicate that chromosomal CNAs can help identify rectal cancer patients more likely to develop a pCR to CRT.


Available from: Alessandro Fichera, May 28, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pallister-Killian syndrome (PKS) is a multisystem sporadic genetic condition characterized by facial anomalies, variable developmental delay and intellectual impairment, hypotonia, hearing loss, seizures, pigmentary skin differences, temporal alopecia, diaphragmatic hernia, congenital heart defects, and other systemic abnormalities. PKS is typically caused by the presence of a supernumerary isochromosome composed of the short arms of chromosome 12 resulting in tetrasomy 12p, which is often present in a tissue limited mosaic state. The PKS phenotype has also often been observed in individuals with complete or partial duplications of 12p (trisomy 12p rather than tetrasomy 12p) as the result of an interstitial duplication or unbalanced translocation. We have identified a proposita with PKS who has two small de novo interstitial duplications of 12p which, along with a review of previously reported cases, has allowed us to define a minimum critical region for PKS. © 2012 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 12/2012; 158A(12). DOI:10.1002/ajmg.a.35500 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment.
    PLoS ONE 11/2012; 7(11):e50415. DOI:10.1371/journal.pone.0050415 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lymph node metastasis is an important indicator of oncologic outcome for patients with rectal cancer. Identifying predictive biomarkers of lymph node metastasis could therefore be clinically useful. The aim of this study was to assess whether chromosomal copy number alterations can assist in predicting persistent lymph node metastasis in patients with locally advanced rectal cancer treated with preoperative chemoradiation therapy. This is a nonrandomized, prospective phase II study. This study took place in a multi-institutional setting. Ninety-five patients with stage II (cT3-4, cN0) or stage III (any cT, cN1-2) rectal cancer were included. Patients were treated with preoperative chemoradiation therapy followed by total mesorectal excision. Pretreatment biopsy tumor DNA and surgical margin control DNA were extracted and analyzed by oligonucleotide array-based comparative genomic hybridization. Chromosomal copy number alterations were correlated with persistent lymph node metastasis. Finally, a model for predicting persistent lymph node metastasis was built. The primary outcomes assessed were whether chromosomal copy number alterations are associated with persistent lymph node metastasis in patients with rectal cancer and the accuracy of oligonucleotide array-based comparative genomic hybridization for predicting lymph node metastasis. Twenty-five of 95 (26%) patients had lymph node metastasis after chemoradiation. Losses of 28 chromosomal regions, most notably in chromosome 4, were significantly associated with lymph node metastasis. Our predictive model contained 65 probes and predicted persistent lymph node metastasis with 68% sensitivity, 93% specificity, and positive and negative predictive values of 77% and 89%. The use of this model accurately predicted lymph node status (positive or negative) after chemoradiation therapy in 82 of 95 patients (86%). The patient cohort was not completely homogeneous, which may have influenced their clinical outcome. In addition, although we performed rigorous, statistically sound internal validation, external validation will be important to further corroborate our findings. Copy number alterations can help identify patients with rectal cancer who are at risk of lymph node metastasis after chemoradiation.
    Diseases of the Colon & Rectum 06/2012; 55(6):677-85. DOI:10.1097/DCR.0b013e31824f873f · 3.20 Impact Factor

Similar Publications