Vitamin C prevents hyperoxia-mediated coronary vasoconstriction and impairment of myocardial function in healthy subjects.

Penn State Heart and Vascular Institute, H047, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
Arbeitsphysiologie (Impact Factor: 2.66). 05/2011; 112(2):483-92. DOI: 10.1007/s00421-011-1997-x
Source: PubMed

ABSTRACT Supplementary oxygen is commonly administered in current medical practice. Recently it has been suggested that hyperoxia causes acute oxidative stress and produces prompt and substantial changes in coronary resistance in patients with ischemic heart disease. In this report, we examined whether the effects of hyperoxia on coronary blood velocity (CBV) would be associated with a reduction in myocardial function. We were also interested in determining if the postulated changes in left ventricular (LV) function seen with tissue Doppler imaging (TDI) could be reversed with intravenous vitamin C, a potent, acute anti-oxidant. LV function was determined in eight healthy subjects with transthoracic echocardiography and TDI before and after hyperoxia and with and without infusing vitamin C. Hyperoxia compared with room air promptly reduced CBV by 28 ± 3% (from 23.50 ± 2.31 cm/s down to 17.00 ± 1.79 cm/s) and increased relative coronary resistance by 34 ± 5% (from 5.63 ± 0.88 up to 7.32 ± 0.94). Meanwhile, LV myocardial systolic velocity decreased by 11 ± 6% (TDI). These effects on flow and function were eliminated by the infusion of vitamin C, suggesting that these changes are mediated by vitamin C-quenchable substances acting on the coronary microcirculation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS), produced acutely during skeletal muscle contraction, are known to stimulate group IV muscle afferents and accentuate the exercise pressor reflex (EPR) in rodents. The effect of ROS on the EPR in humans is unknown. We conducted a series of studies using ischemic fatiguing rhythmic handgrip to acutely increase ROS within skeletal muscle, ascorbic acid infusion to scavenge free radicals, and hyperoxia inhalation to further increase ROS production. We hypothesized that ascorbic acid would attenuate the EPR and that hyperoxia would accentuate the EPR. Ten young healthy subjects participated in two or three experimental trials on separate days. Beat-by-beat measurements of heart rate (HR), mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and renal vascular resistance index (RVRI) were measured and compared between treatments (saline and ascorbic acid; room air and hyperoxia). At fatigue, the reflex increases in MAP (31 ± 3 versus 29 ± 2 mmHg), HR (19 ± 3 versus 20 ± 3 bpm), MSNA burst rate (21 ± 4 versus 23 ± 4 burst/min), and RVRI (39 ± 12 versus 44 ± 13%) were not different between saline and ascorbic acid. Relative to room air, hyperoxia did not augment the reflex increases in MAP, HR, MSNA, or RVRI in response to exercise. Muscle metaboreflex activation and time/volume control experiments similarly showed no treatment effects. While contrary to our initial hypotheses, these findings suggest that ROS do not play a significant role in the normal reflex adjustments to ischemic exercise in young healthy humans.
    Physiological reports. 08/2013; 1(3).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to measure plasma nitrite, the biochemical marker of endothelial nitric oxide ((•)NO) synthesis, before and after hyperoxia, in order to test the hypothesis that hyperoxia-induced vasoconstriction is a consequence of reduced bioavailability of (•)NO caused by elevated oxidative stress. Ten healthy men breathed 100% normobaric O(2) for 30 min between 15th and 45th min of the 1-h study protocol. Plasma nitrite and malondialdehyde (MDA), arterial stiffness (indicated by augmentation index, AIx) and arterial oxygen (P(tc)O(2)) pressure were measured at 1st, 15th, 45th and 60th minute of the study. Breathing of normobaric 100% oxygen during 30 min caused an increase in P(tc)O(2) (from 75 ± 2 to 412 ± 25 mm Hg), AIx (from -63 ± 4 to -51 ± 3%) and MDA (from 152 ± 13 to 218 ± 15 nm) values and a decrease in plasma nitrite (from 918 ± 58 to 773 ± 55 nm). During the 15-min recovery phase, plasma nitrite, AIx and MDA values remained altered. This study suggests that the underlying mechanism of hyperoxia-induced vasoconstriction may involve reduced (•)NO bioavailability caused by elevated and sustained oxidative stress.
    Clinical Physiology and Functional Imaging 09/2012; 32(5):404-8. · 1.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stroke is a leading cause of death and disability due to disturbance of blood supply to the brain. As brain is highly sensitive to hypoxia, insufficient oxygen supply is a critical event contributing to ischemic brain injury. Normobaric hyperoxia (NBO) that aims to enhance oxygen delivery to hypoxic tissues has long been considered as a logical neuroprotective therapy for ischemic stroke. To date, many possible mechanisms have been reported to elucidate NBO's neuroprotection, such as improving tissue oxygenation, increasing cerebral blood flow, reducing oxidative stress and protecting the blood brain barrier. As ischemic stroke triggers a battery of damaging events, combining NBO with other agents or treatments that target multiple mechanisms of injury may achieve better outcome than individual treatment alone. More importantly, time loss is brain loss in acute cerebral ischemia. NBO can be a rapid therapy to attenuate or slow down the evolution of ischemic tissues towards necrosis and therefore "buy time" for reperfusion therapies. This article summarizes the current literatures on NBO as a simple, widely accessible, and potentially cost-effective therapeutic strategy for treatment of acute ischemic stroke.
    Medical gas research. 01/2013; 3(1):2.


Available from