Article

Plasminogen activator inhibitor type-1 deficiency exaggerates LPS-induced acute lung injury through enhancing Toll-like receptor 4 signaling pathway.

aDepartment of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, People's Republic of China.
Blood coagulation & fibrinolysis: an international journal in haemostasis and thrombosis (Impact Factor: 1.25). 05/2011; 22(6):480-6. DOI: 10.1097/MBC.0b013e328346ef56
Source: PubMed

ABSTRACT Mice lacking plasminogen activator inhibitor-1 (PAI-1) did not affect lung injury induced by gram-positive bacteria pneumococcal pneumonia but worsened lung injury induced by gram-negative bacteria Klebsiella. The exact mechanisms have not been completely elucidated. In this study, we examined the signaling pathway of Toll-like receptor 4 (TLR4) with/without PAI-1 in acute lung injury (ALI) induced by lipopolysaccharides (LPS) in mice. PAI-1 knockout mice (n=60) and wild-type mice (n=60) were exposed to LPS intratracheal instillation. Different groups of mice were then sacrificed at 0 and 8 h after LPS instillation. PAI-1-/- mice showed increased excess lung water and elevated cytokines production and release. In addition, expression of TLR4 was up-regulated and the phosphorylation activation of extracellular regulating kinase (ERK) and c-Jun N-terminal kinase (JNK) were also increased in PAI-1 knockout mice compared to wild-type mice. Inversely, interleukin (IL)-1 receptor-associated kinase-M (IRAK-M) and suppressor of cytokine signaling 1 (SOCS1) were both significantly reduced in PAI-1-/-mice after LPS challenge. PAI-1 deletion increased lung injury induced by LPS through up-regulation of TLR4, ERK and C-JNK and down-regulation of TLR4 negative regulators.

0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background. The mechanisms by which plasminogen activator inhibitor-1 (PAI-1) regulates inflammation, especially in acute respiratory distress syndrome (ARDS), are largely unknown. Objective. To assess the relationship between PAI-1 and autophagy in inflammatory reactions induced by LPS in rat NR8383 cells. Methods. ELISA was used to assess the amounts of TNF-α, IL-1β, and PAI-1 in cell culture supernatants; TLR4, MyD88, PAI-1, LC3, Beclin1, and mTOR protein and mRNA levels were determined by western blot and quantitative RT-PCR, respectively; western blot was used to determine NF-κB protein levels. To further evaluate the role of PAI-1, the PAI-1 gene was downregulated and overexpressed using the siRNA transfection technology and the pCDH-PAI-1, respectively. Finally, the GFP Positive Expression Rate Method was used to determine the rate of GFP-LC3 positive NR8383 cells. Results. In LPS-induced NR8383 cells, TNF-α, IL-1β, and PAI-1 expression levels increased remarkably. Upon PAI-1 knockdown, TNF-α, IL-1β, PAI-1, TLR4, MyD88, NF-κB, LC3, and Beclin1 levels were decreased, while mTOR increased. Conversely, overexpression of PAI-1 resulted in increased amounts of TNF-α, IL-1β, PAI-1, TLR4, MyD88, NF-κB, LC3, and Beclin1. However, no significant change was observed in mTOR expression. Conclusions. In NR8383 cells, PAI-1 contributes in the regulation of LPS-induced inflammation, likely by promoting autophagy.
    TheScientificWorldJournal. 01/2014; 2014:189168.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) is a serious clinical syndrome with a high rate of mortality. In this study, the effects of triptolide on lipopolysaccharide (LPS)-induced ALI in rats were investigated. Sixty-five male Sprague Dawley rats(approved by ethics committee of the First Affiliated Hospital of Soochow University) were randomly divided into five groups. The control group was injected with 2.5 mL saline/kg body weight via the tail vein and intraperitoneally with 1% dimethyl sulfoxide (DMSO) (n = 5). The L group was administered with 0.2% LPS dissolved in saline (5 mg/kg) to induce ALI via the tail vein (n = 15). The TP1, TP2, and TP3 groups were treated as rats in the L group and then intraperitoneally injected with 25, 50, and 100 mug triptolide/kg body weight, respectively (15 rats per group). Blood samples from the left heart artery were taken for blood gas analysis at 1 hour before injection and at 1, 3, 6, and 12 hours after saline and DMSO administration in the control group, LPS injection in the L group, and triptolide injection in the TP1, TP2, and TP3 groups. Lung wet-to-dry weight (W/D) ratio, diffuse alveolar damage (DAD) score, TNF-alpha levels, and mRNA and protein expression of toll-like receptor 4 (TLR4) were analyzed. Compared with the control group, the arterial partial pressure of oxygen (PaO2) declined (P <0.05), the W/D ratio and DAD score increased (P <0.05), and TNF-alpha levels in serum and bronchoalveolar lavage fluid (BALF) and mRNA and protein expression of TLR4 were significantly increased in the L group (P <0.05). Compared with the L group, PaO2 significantly increased in the TP2 and TP3 groups (P <0.05), while the W/D ratio and DAD score were significantly decreased in the TP2 and TP3 groups (P <0.05). TNF-alpha levels and mRNA and protein expression of TLR4 were significantly decreased in the TP2 and TP3 groups compared with the L group (P <0.05). Triptolide can ameliorate LPS-induced ALI by reducing the release of the inflammatory mediator TNF-alpha and inhibiting TLR4 expression.
    European journal of medical research. 12/2013; 18(1):58.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The outer membrane protease Pla belongs to the omptin protease family spread by horizontal gene transfer into Gram-negative bacteria that infect animals or plants. Pla has adapted to support the life style of the plague bacterium Yersinia pestis. Pla has a β-barrel fold with 10 membrane-spanning β strands and five surface loops, and the barrel surface contains bound lipopolysaccharide (LPS) that is critical for the conformation and the activity of Pla. The biological activity of Pla is influenced by the structure of the surface loops around the active site groove and by temperature-induced LPS modifications. Several of the putative virulence-related functions documented for Pla in vitro address control of the human hemostatic system, i.e., coagulation and fibrinolysis. Pla activates human plasminogen to the serine protease plasmin and activates the physiological plasminogen activator urokinase. Pla also inactivates the protease inhibitors alpha-2-antiplasmin and plasminogen activator inhibitor 1 (PAI-1) and prevents the activation of thrombin-activatable fibrinolysis inhibitor (TAFI). These functions enhance uncontrolled fibrinolysis which is thought to improve Y. pestis dissemination and survival in the mammalian host, and lowered fibrin(ogen) deposition has indeed been observed in mice infected with Pla-positive Y. pestis. However, Pla also inactivates an anticoagulant, the tissue factor (TF) pathway inhibitor, which should increase fibrin formation and clotting. Thus, Pla and Y. pestis have complex interactions with the hemostatic system. Y. pestis modifies its LPS upon transfer to the mammalian host and we hypothesize that the contrasting biological activities of Pla in coagulation and fibrinolysis are influenced by LPS changes during infection.
    Frontiers in Cellular and Infection Microbiology 01/2013; 3:35. · 2.62 Impact Factor