Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-κB and AP-1 signaling

Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, 46202, USA.
Nutrition Journal (Impact Factor: 2.64). 05/2011; 10:52. DOI: 10.1186/1475-2891-10-52
Source: PubMed

ABSTRACT Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (Pleurotus ostreatus) in vitro and in vivo.
RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 μg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.
OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE2) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-κB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS in vivo. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-γ (IFN-γ), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.
Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to investigate the effects of dietary isoleucine (Ile) on the immune response, antioxidant status, tight junctions, and microbial population in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 1200 juvenile Jian carp with average initial weight 6.9 ± 0.03 g were fed semi-purified isonitrogenous diets containing 4.2 (unsupplemented control group), 7.0, 9.5, 11.9, 13.9 and 16.9 g Ile kg(-1) diet for 60 days. Results indicated that Ile supplementation decreased malondialdehyde (MDA) and protein carbonyl content, and the amounts of Escherichia coli and Aeromonas in the intestine (P < 0.05), and increased the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), glutathione content and the amounts of Lactobacillus and Bacillus in the intestine (P < 0.05). Furthermore, real time polymerase chain reaction revealed that relative mRNA expression of copper/zinc superoxide dismutase (Cu-ZnSOD), manganese superoxide dismutase (MnSOD), CAT, NF-E2-related factor 2 (Nrf2), p38 mitogen-activated protein kinases (p38MAPK) in the intestine were increased with increasing of dietary Ile up to a certain point (P < 0.05). Conversely, the relative mRNA expression of occludin, claudin-3, claudin-7, TNF-α, IL-10, Kelch-like-ECH- associated protein 1 (Keap1), extracellular signal-regulated kinase 1 (ERK1) in the intestine showed a downward trend (P < 0.05). In conclusion, dietary Ile improves intestinal immune function, antioxidant capacity and microbial population, and regulates gene expression of antioxidant enzyme, tight junctions, Nrf2, Keap1, p38 and ERK1 in the intestine of Jian carp. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Fish &amp Shellfish Immunology 12/2014; 41(2):663-73. DOI:10.1016/j.fsi.2014.10.002 · 2.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mushrooms are famous for their nutritional and medicinal values and also for the diversity of bioactive compounds they contain including lectins. The present review is an attempt to summarize and discuss data available on molecular weights, structures, biological properties, N-terminal sequences and possible applications of lectins from edible mushrooms. It further aims to update and discuss/examine the recent advancements in the study of these lectins regarding their structures, functions, and exploitable properties. A detailed tabling of all the available data for N-terminal sequences of these lectins is also presented here.
    Molecules 01/2014; 20(1):446-469. DOI:10.3390/molecules20010446 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mushrooms have been consumed since earliest history; ancient Greeks believed that mushrooms provided strength for warriors in battle, and the Romans perceived them as the " Food of the Gods. " For centuries, the Chinese culture has treasured mushrooms as a health food, an " elixir of life. " They have been part of the human culture for thousands of years and have considerable interest in the most important civilizations in history because of their sensory characteristics; they have been recognized for their attractive culinary attributes. Nowadays, mushrooms are popular valuable foods because they are low in calories, carbohydrates, fat, and sodium: also, they are cholesterol-free. Besides, mushrooms provide important nutrients, including selenium, potassium, riboflavin, niacin, vitamin D, proteins, and fiber. All together with a long history as food source, mushrooms are important for their healing capacities and properties in traditional medicine. It has reported beneficial effects for health and treatment of some diseases. Many nutraceutical properties are described in mushrooms, such as prevention or treatment of Parkinson, Alzheimer, hypertension, and high risk of stroke. They are also utilized to reduce the likelihood of cancer invasion and metastasis due to antitumoral attributes. Mushrooms act as antibacterial, immune system enhancer and cholesterol lowering agents; additionally, they are important sources of bioactive compounds. As a result of these properties, some mushroom extracts are used to promote human health and are found as dietary supplements.
    International Journal of Microbiology 01/2015; 2015:14. DOI:10.1155/2015/376387 · 4.53 Impact Factor

Full-text (3 Sources)

Available from
May 22, 2014