Article

Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents.

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.62). 07/2011; 68(13):2177-88. DOI: 10.1007/s00018-011-0711-9
Source: PubMed

ABSTRACT Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.

1 Bookmark
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Host defense antimicrobial peptides are key components of human innate immunity that plays an indispensible role in human health. While there are multiple copies of cathelicidin genes in horses, cattle, pigs, and sheep, only one cathelicidin gene is found in humans. Interestingly, this single cathelicidin gene can be processed into different forms of antimicrobial peptides. LL-37, the most commonly studied form, is not only antimicrobial but also possesses other functional roles such as chemotaxis, apoptosis, wound healing, immune modulation, and cancer metastasis. This article reviews recent advances made in structural and biophysical studies of human LL-37 and its fragments, which serve as a basis to understand their antibacterial, anti-biofilm and antiviral activities. High-quality structures were made possible by using improved 2D NMR methods for peptide fragments and 3D NMR spectroscopy for intact LL-37. The two hydrophobic domains in the long amphipathic helix (residues 2-31) of LL-37 separated by a hydrophilic residue serine 9 explain its cooperative binding to bacterial lipopolysaccharides (LPS). Both aromatic rings (F5, F6, F17, and F27) and interfacial basic amino acids of LL-37 directly interact with anionic phosphatidylglycerols (PG). Although the peptide sequences reported in the literature vary slightly, there is a consensus that the central helix of LL-37 is essential for disrupting superbugs (e.g., MRSA), bacterial biofilms, and viruses such as human immunodeficiency virus 1 (HIV-1) and respiratory syncytial virus (RSV). In the central helix, the central arginine R23 is of particular importance in binding to bacterial membranes or DNA. Mapping the functional roles of the cationic amino acids of the major antimicrobial region of LL-37 provides a basis for designing antimicrobial peptides with desired properties. This article is part of a Special Issue entitled: Interfacially active peptides and proteins.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure and function of lipid-based complexes (lipoplexes) have been widely investigated as cellular delivery vehicles for nucleic acids—DNA and siRNA. Transfection efficiency in applications such as gene therapy and gene silencing has been clearly linked to the local, nano-scale organization of the nucleic acid in the vehicle, as well as to the global properties (e.g. size) of the carriers. This review focuses on both the structure of DNA and siRNA complexes with cationic lipids, and the kinetics of structure evolution during complex formation.The local organization of the lipoplexes is largely set by thermodynamic, equilibrium forces, dominated by the lipid preferred phase. As a result, complexation of linear lambda-phage DNA, circular plasmid DNA, or siRNA with lamellae-favoring lipids (or lipid mixtures) forms multi-lamellar LαC liquid crystalline arrays. Complexes created with lipids that have bulky tail groups may form inverted hexagonal HIIC phases, or bicontinuous cubic QIIC phases.The kinetics of complex formation dominates the large-scale, global structure and the properties of lipoplexes. Furthermore, the time-scales required for the evolution of the equilibrium structure may be much longer than expected. In general, the process may be divided into three distinct stages: An initial binding, or adsorption, step, where the nucleic acid binds onto the surface of the cationic vesicles. This step is relatively rapid, occurring on time scales of order of milliseconds, and largely insensitive to system parameters. In the second step, vesicles carrying adsorbed nucleic acid aggregate to form larger complexes. This step is sensitive to the lipid characteristics, in particular the bilayer rigidity and propensity to rupture, and to the lipid to nucleic acid (L/D) charge ratio, and is characterized by time scales of order seconds. The last and final step is that of internal rearrangement, where the overall global structure remains constant while local adjustment of the nucleic acid/lipid organization takes place. This step may occur on unusually long time scales of order hours or longer. This rate, as well, is highly sensitive to lipid characteristics, including membrane fluidity and rigidity. While the three step process is consistent with many experimental observations to date, improving performance of these non-viral vectors requires better understanding of the correlations between the parameters that influence lipoplexes formation and stability and the specific rate constants i.e., the timescales required to obtain the equilibrium structures. Moreover, new types of cellular delivery agents are now emerging, such as antimicrobial peptide complexes with anionic lipids, and other proteins and small-molecule lipid carriers, suggesting that better understanding of lipoplex kinetics would apply to a variety of new systems in biotechnology and nanomedicine.
    Advances in colloid and interface science 01/2014; · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Certain antibiotic peptides are thought to permeabilize membranes of pathogens by effects that are also observed for simple detergents, such as membrane thinning and disordering, asymmetric bilayer expansion, toroidal pore formation, and micellization. Here we test the hypothesis that such peptides act additively with detergents when applied in parallel. Additivity is defined analogously to a fractional inhibitory concentration index of unity, and the extent and mechanism of leakage is measured by the fluorescence lifetime-based vesicle leakage assay using calcein-loaded vesicles. Good additivity was found for the concerted action of magainin 2, the fungicidal lipopeptide class of surfactins from Bacillus subtilis QST713, and the detergent octyl glucoside, respectively, with the detergent C12EO8. Synergistic or superadditive action was observed for fengycins from B. subtilis, as well as the detergent CHAPS, when combined with C12EO8. The results illustrate two mechanisms of synergistic action: First, maximal leakage requires an optimum degree of heterogeneity in the system that may be achieved by mixing a graded with an all-or-none permeabilizer. (The optimal perturbation should be focused to certain defect structures, yet not to the extent that some vesicles are not affected at all.) Second, a cosurfactant may enhance the bioavailability of a poorly soluble peptide. The results are important for understanding the concerted action of membrane-permeabilizing compounds in biology as well as for optimizing formulations of such antimicrobials for medical applications or crop protection.
    05/2014; 106(10):2115–2125.