Article

Fosmidomycin Uptake into Plasmodium and Babesia-Infected Erythrocytes Is Facilitated by Parasite-Induced New Permeability Pathways

Parasitologie, Fachbereich Biologie, Philipps-Universität, Marburg, Germany.
PLoS ONE (Impact Factor: 3.53). 05/2011; 6(5):e19334. DOI: 10.1371/journal.pone.0019334
Source: PubMed

ABSTRACT Highly charged compounds typically suffer from low membrane permeability and thus are generally regarded as sub-optimal drug candidates. Nonetheless, the highly charged drug fosmidomycin and its more active methyl-derivative FR900098 have proven parasiticidal activity against erythrocytic stages of the malaria parasite Plasmodium falciparum. Both compounds target the isoprenoid biosynthesis pathway present in bacteria and plastid-bearing organisms, like apicomplexan parasites. Surprisingly, the compounds are inactive against a range of apicomplexans replicating in nucleated cells, including Toxoplasma gondii.
Since non-infected erythrocytes are impermeable for FR90098, we hypothesized that these drugs are taken up only by erythrocytes infected with Plasmodium. We provide evidence that radiolabeled FR900098 accumulates in theses cells as a consequence of parasite-induced new properties of the host cell, which coincide with an increased permeability of the erythrocyte membrane. Babesia divergens, a related parasite that also infects human erythrocytes and is also known to induce an increase in membrane permeability, displays a similar susceptibility and uptake behavior with regard to the drug. In contrast, Toxoplasma gondii-infected cells do apparently not take up the compounds, and the drugs are inactive against the liver stages of Plasmodium berghei, a mouse malaria parasite.
Our findings provide an explanation for the observed differences in activity of fosmidomycin and FR900098 against different Apicomplexa. These results have important implications for future screens aimed at finding new and safe molecular entities active against P. falciparum and related parasites. Our data provide further evidence that parasite-induced new permeability pathways may be exploited as routes for drug delivery.

0 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 1-deoxy-D-xylulose-5-phosphate synthase (DXS) enzyme has been characterized in other species, but not in the genus Babesia, which causes major losses in the livestock industries worldwide. Therefore, we isolated, clonedand expressed the wild-type B. bovis dxs cDNA in Escherichia coli and evaluated its enzymatic activity in vitro. DNA sequence analysis revealed an open reading frame of 2061 bp capable of encoding a polypeptide of 686 amino acid residues with a calculated isoelectric point of pH 6.93 and a molecular mass of 75 kDa. The expressed soluble recombinant fusion DXS protein was approximately 78 kDa, which is similar to the native enzyme identified from the parasite merozoite using anti-rDXS serum. The recombinant fusion DXS enzyme exhibited Km values of 380 ± 46 µM and 790 ± 52 µM for D,L-glyceraldehyde 3-phosphate and pyruvate, respectively. In this work, we present the first cloning, expression and characterization of DXS enzyme from B. bovis.
    Journal of Veterinary Medical Science 04/2014; 76(7). DOI:10.1292/jvms.13-0623 · 0.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malaria kills nearly one million people each year, and the protozoan parasite Plasmodium falciparum has become increasingly resistant to current therapies. Isoprenoid synthesis via the methylerythritol phosphate (MEP) pathway represents an attractive target for the development of new antimalarials. The phosphonic acid antibiotic fosmidomycin is a specific inhibitor of isoprenoid synthesis and has been a helpful tool to outline the essential functions of isoprenoid biosynthesis in P. falciparum. Isoprenoids are a large, diverse class of hydrocarbons that function in a variety of essential cellular processes in eukaryotes. In P. falciparum, isoprenoids are used for tRNA isopentenylation and protein prenylation, as well as synthesis of vitamin E, carotenoids, ubiquinone, and dolichols. Recently, isoprenoid synthesis in P. falciparum has been shown to be regulated by a sugar phosphatase. We outline what is known about isoprenoid function and regulation of isoprenoid synthesis in P. falciparum, in order to identify valuable directions for future research.
    Eukaryotic Cell 09/2014; 13(11). DOI:10.1128/EC.00160-14 · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Colpodellids are free-living, predatory flagellates, but their close relationship to photosynthetic chromerids and plastid-bearing apicomplexan parasites suggests they were ancestrally photosynthetic. Colpodellids may therefore retain a cryptic plastid, or they may have lost their plastids entirely, like the apicomplexan Cryptosporidium. To find out, we generated transcriptomic data from Voromonas pontica ATCC 50640 and searched for homologs of genes encoding proteins known to function in the apicoplast, the non-photosynthetic plastid of apicomplexans. We found candidate genes from multiple plastid-associated pathways including iron-sulfur cluster assembly, isoprenoid biosynthesis, and tetrapyrrole biosynthesis, along with a plastid-type phosphate transporter gene. Four of these sequences include the 5' end of the coding region and are predicted to encode a signal peptide and a transit peptide-like region. This is highly suggestive of targeting to a cryptic plastid. We also performed a taxon-rich phylogenetic analysis of small subunit ribosomal RNA sequences from colpodellids and their relatives, which suggests that photosynthesis was lost more than once in colpodellids, and independently in V. pontica and apicomplexans. Colpodellids therefore represent a valuable source of comparative data for understanding the process of plastid reduction in humanity's most deadly parasite.
    PLoS ONE 05/2014; 9(5):e96258. DOI:10.1371/journal.pone.0096258 · 3.53 Impact Factor

Full-text (3 Sources)

Download
63 Downloads
Available from
May 21, 2014