The archaeal cell envelope.

Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany.
Nature Reviews Microbiology (Impact Factor: 22.49). 06/2011; 9(6):414-26. DOI: 10.1038/nrmicro2576
Source: PubMed

ABSTRACT At first glance, archaea and bacteria look alike; however, the composition of the archaeal cell envelope is fundamentally different from the bacterial cell envelope. With just one exception, all archaea characterized to date have only a single membrane and most are covered by a paracrystalline protein layer. This Review discusses our current knowledge of the composition of the archaeal cell surface. We describe the wide range of cell wall polymers, O- and N-glycosylated extracellular proteins and other cell surface structures that archaea use to interact with their environment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: FlaB, the subunit of the archaellum filament, is modified by N-glycosylation of six N-glycans.•Defects in the N-glycosylation pathway resulted in none or reduced motile cells.•However, strains lacking one to all six N-glycosylation sites within FlaB still remained motile.•N-glycosylation does not appear to be important for the stability and assembly of the archaellum filament itself, but plays a role in other parts of the archaellum assembly.
    Biochimie 11/2014; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilm formation and the production of extracellular polymeric substances (EPS) by meso- and thermoacidophilic metal-oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin-binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.
    Microbial Biotechnology 12/2014; · 3.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similarly to Bacteria, Archaea are microorganisms that interact with their surrounding environment in a versatile manner. To date, interactions based on cellular structure and surface appendages have mainly been documented using model systems of cultivable archaea under laboratory conditions. Here, we report on the microbial interactions and ultrastructural features of the uncultivated SM1 Euryarchaeon, which is highly dominant in its biotope. Therefore, biofilm samples taken from the Sippenauer Moor, Germany, were investigated via transmission electron microscopy (TEM; negative staining, thin-sectioning) and scanning electron microscopy (SEM) in order to elucidate the fine structures of the microbial cells and the biofilm itself. The biofilm consisted of small archaeal cocci (0.6 μm diameter), arranged in a regular pattern (1.0-2.0 μm distance from cell to cell), whereas each archaeon was connected to 6 other archaea on average. Extracellular polymeric substances (EPS) were limited to the close vicinity of the archaeal cells, and specific cell surface appendages (hami, Moissl et al., 2005) protruded beyond the EPS matrix enabling microbial interaction by cell-cell contacts among the archaea and between archaea and bacteria. All analyzed hami revealed their previously described architecture of nano-grappling hooks and barb-wire basal structures. Considering the archaeal cell walls, the SM1 Euryarchaea exhibited a double-membrane, which has rarely been reported for members of this phylogenetic domain. Based on these findings, the current generalized picture on archaeal cell walls needs to be revisited, as archaeal cell structures are more complex and sophisticated than previously assumed, particularly when looking into the uncultivated majority.
    Frontiers in microbiology. 01/2014; 5:397.


Available from
Nov 11, 2014