Article

Immunogenicity of induced pluripotent stem cells.

Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0322, USA.
Nature (Impact Factor: 42.35). 05/2011; 474(7350):212-5. DOI: 10.1038/nature10135
Source: PubMed

ABSTRACT Induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells with defined factors, hold great promise for regenerative medicine as the renewable source of autologous cells. Whereas it has been generally assumed that these autologous cells should be immune-tolerated by the recipient from whom the iPSCs are derived, their immunogenicity has not been vigorously examined. We show here that, whereas embryonic stem cells (ESCs) derived from inbred C57BL/6 (B6) mice can efficiently form teratomas in B6 mice without any evident immune rejection, the allogeneic ESCs from 129/SvJ mice fail to form teratomas in B6 mice due to rapid rejection by recipients. B6 mouse embryonic fibroblasts (MEFs) were reprogrammed into iPSCs by either retroviral approach (ViPSCs) or a novel episomal approach (EiPSCs) that causes no genomic integration. In contrast to B6 ESCs, teratomas formed by B6 ViPSCs were mostly immune-rejected by B6 recipients. In addition, the majority of teratomas formed by B6 EiPSCs were immunogenic in B6 mice with T cell infiltration, and apparent tissue damage and regression were observed in a small fraction of teratomas. Global gene expression analysis of teratomas formed by B6 ESCs and EiPSCs revealed a number of genes frequently overexpressed in teratomas derived from EiPSCs, and several such gene products were shown to contribute directly to the immunogenicity of the B6 EiPSC-derived cells in B6 mice. These findings indicate that, in contrast to derivatives of ESCs, abnormal gene expression in some cells differentiated from iPSCs can induce T-cell-dependent immune response in syngeneic recipients. Therefore, the immunogenicity of therapeutically valuable cells derived from patient-specific iPSCs should be evaluated before any clinic application of these autologous cells into the patients.

1 Bookmark
 · 
172 Views
  • Source
    Dataset: Full text
  • Source
    Dataset: Full text
  • [Show abstract] [Hide abstract]
    ABSTRACT: During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.

Full-text (2 Sources)

Download
86 Downloads
Available from
May 20, 2014