Article

Rare Intranuclear Inclusions in the Brains of 3 Older Adult Males With Fragile X Syndrome: Implications for the Spectrum of Fragile X-Associated Disorders

NeuroTherapeutics Research Institute and Department of Neurological Surgery, University of California, Davis School of Medicine, USA.
Journal of Neuropathology and Experimental Neurology (Impact Factor: 4.37). 06/2011; 70(6):462-9. DOI: 10.1097/NEN.0b013e31821d3194
Source: PubMed

ABSTRACT The FMR1 gene is polymorphic for the length of CGG trinucleotide repeat expansions in the 5' untranslated region. Premutation (55-200 CGG repeats) and full-mutation (>200 CGG repeats) alleles give rise to their respective disorders by different pathogenic mechanisms: RNA gain-of-function toxicity leads to fragile X-associated tremor/ataxia syndrome in the premutation range, and transcriptional silencing and absence of fragile X mental retardation protein (FMRP) lead to fragile X syndrome in the full-mutation range. However, for the latter, incomplete silencing and/or size-mosaicism might result in some contribution to the disease process from residual messenger RNA production. To address this possibility, we examined the brains of 3 cases of fragile X syndrome for the presence of intranuclear inclusions in the hippocampal dentate gyrus. We identified low levels (0.1%-1.3%) of intranuclear inclusions in all 3 cases. Quantitative reverse transcription-polymerase chain reaction for FMR1 messenger RNA and immunofluorescence for FMRP revealed low but detectable levels of both RNA and protein in the 3 cases, consistent with the presence of small numbers of inclusions. The intranuclear inclusions were only present in FMRP-immunoreactive cells. The small numbers of inclusions and very low levels of both FMR1 RNA and protein suggest that the clinical course in these 3 subjects would not have been influenced by contributions from RNA toxicity.

0 Followers
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X–associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some but not all carriers of small, noncoding CGG-repeat expansions (55–200 repeats; premutation) within the fragile X gene (FMR1). Principal features of FXTAS include intention tremor, cerebellar ataxia, Parkinsonism, memory and executive function deficits, autonomic dysfunction, brain atrophy with white matter disease, and cognitive decline. Although FXTAS was originally considered to be confined to the premutation range, rare individuals with a gray zone (45–54 repeats) or an unmethylated full mutation (>200 repeats) allele have now been described, the constant feature of the disorder remaining the requirement for FMR1 expression, in contradistinction to the gene silencing mechanism of fragile X syndrome. Although transcriptional activity is required for FXTAS pathogenesis, the specific trigger(s) for FXTAS pathogenesis remains elusive, highlighting the need for more research in this area. This need is underscored by recent neuroimaging findings of changes in the central nervous system that consistently appear well before the onset of clinical symptoms, thus creating an opportunity to delay or prevent the appearance of FXTAS.
    Annals of the New York Academy of Sciences 01/2015; 1338(1). DOI:10.1111/nyas.12693 · 4.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fragile X mental retardation 1 gene (FMR1), which codes for the fragile X mental retardation 1 protein (FMRP), is located at Xp27.3. The normal allele of the FMR1 gene typically has 5 to 40 CGG repeats in the 5' untranslated region; abnormal alleles of dynamic mutations include the full mutation (> 200 CGG repeats), premutation (55-200 CGG repeats) and the gray zone mutation (45-54 CGG repeats). Premutation carriers are common in the general population with approximately 1 in 130-250 females and 1 in 250-810 males, whereas the full mutation and Fragile X syndrome (FXS) occur in approximately 1 in 4000 to 1 in 7000. FMR1 mutations account for a variety of phenotypes including the most common monogenetic cause of inherited intellectual disability (ID) and autism (FXS), the most common genetic form of ovarian failure, the fragile X-associated primary ovarian insufficiency (FXPOI, premutation); and fragile X-associated tremor/ataxia syndrome (FXTAS, premutation). The premutation can also cause developmental problems including ASD and ADHD especially in boys and psychopathology including anxiety and depression in children and adults. Some premutation carriers can have a deficit of FMRP and some unmethylated full mutation individuals can have elevated FMR1 mRNA that is considered a premutation problem. Therefore the term "Fragile X Spectrum Disorder" (FXSD) should be used to include the wide range of overlapping phenotypes observed in affected individuals with FMR1 mutations. In this review we focus on the phenotypes and genotypes of children with FXSD.
    11/2014; 3(4):134-46. DOI:10.5582/irdr.2014.01022
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations.
    01/2014; 3. DOI:10.4172/2168-975X.1000119