Article

Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization.

National Center for Biotechnology Information, National Library of Medicine, National Institutes ofHealth, Bethesda, MD 20894, USA.
Physical Biology (Impact Factor: 3.14). 06/2011; 8(3):035007. DOI: 10.1088/1478-3975/8/3/035007
Source: PubMed

ABSTRACT Many soluble and membrane proteins form homooligomeric complexes in a cell which are responsible for the diversity and specificity of many pathways, may mediate and regulate gene expression, activity of enzymes, ion channels, receptors, and cell adhesion processes. The evolutionary and physical mechanisms of oligomerization are very diverse and its general principles have not yet been formulated. Homooligomeric states may be conserved within certain protein subfamilies and might be important in providing specificity to certain substrates while minimizing interactions with other unwanted partners. Moreover, recent studies have led to a greater awareness that transitions between different oligomeric states may regulate protein activity and provide the switch between different pathways. In this paper we summarize the biological importance of homooligomeric assemblies, physico-chemical properties of their interfaces, experimental and computational methods for their identification and prediction. We particularly focus on homooligomer evolution and describe the mechanisms to develop new specificities through the formation of different homooligomeric complexes. Finally, we discuss the possible role of oligomeric transitions in the regulation of protein activity and compile a set of experimental examples with such regulatory mechanisms.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transducin (T) is a heterotrimer of Tα, Tβ, and Tγ subunits. In the presence of light-activated rhodopsin, 8-azidoguanosine triphosphate (8-N3GTP) was covalently incorporated into T in a UV-light photodependent manner, with a low stoichiometry of 0.02 mol of 8-N3GTP per mol of T. Although Tα was preferentially labeled by 8-N3GTP, Tβ and Tγ were also modified. Photolabeling of T was specifically inhibited by GDP and GTP, but not by β,γ-imido-guanosine 5'-triphosphate (GMP-PNP), indicating that 8-N3GTP was modifying the GDP binding site of the holoenzyme. This was consistent with the observation that the photoaffinity probe was completely hydrolyzed to 8-N3GDP by T activated by illuminated rhodopsin. The formation of intermolecular disulfide associations in T was also determined because photolabeling of T was performed under non-reducing conditions. We established that Cys-347 of Tα was the major residue involved in the formation of disulfide-linked T oligomers. Other cysteines of Tα, such as Cys-321, also participated in the formation of disulfide bonds, revealing a complex pattern of intermolecular disulfide cross-links that led to the polymerization of T. The spontaneous generation of these cystines in Tα inhibited the light-dependent GTPase and GMP-PNP binding activities of T. A model was constructed illustrating that when two heterotrimers dimerize through the formation of disulfide bridges between the Cys-347 of their Tα subunits, the guanine ring of the 8-N3GDP bound to one T molecule might approach to the Tβγ-complex of the other heterotrimer. This model provides an explanation for the additional photolabeling of Tβ and Tγ by 8-N3GTP. Copyright © 2014. Published by Elsevier B.V.
    Biochimie 11/2014; 108C:120-132. DOI:10.1016/j.biochi.2014.11.006 · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphorylation offers a dynamic way to regulate protein activity and subcellular localization, which is achieved through its reversibility and fast kinetics. Adding or removing a dianionic phosphate group somewhere on a protein often changes the protein's structural properties, its stability and dynamics. Moreover, the majority of signaling pathways involve an extensive set of protein-protein interactions, and phosphorylation can be used to regulate and modulate protein-protein binding. Losses of phosphorylation sites, as a result of disease mutations, might disrupt protein binding and deregulate signal transduction. In this paper we focus on the effects of phosphorylation on protein stability, dynamics, and binding. We describe several physico-chemical mechanisms of protein regulation through phosphorylation and pay particular attention to phosphorylation in protein complexes and phosphorylation in the context of disorder-order and order-disorder transitions. Finally we assess the role of multiple phosphorylation sites in a protein molecule, their possible cooperativity and function.
    Frontiers in Genetics 08/2014; 5:270. DOI:10.3389/fgene.2014.00270
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plastidial acyl-acyl carrier protein:sn-glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the acyl-acyl carrier protein-dependent sn-1 acylation of sn-glycerol 3-phosphate (G3P) to produce lysophosphatic acid. Functional recombinant Erysimum asperum GPAT (EaGPAT), devoid of transit peptide, was produced in yeast. Analysis of the dependence of EaGPAT activity on increasing G3P concentration resulted in a hyperbolic response. EaGPAT exhibited a preference for 18-carbon unsaturated acyl-CoAs. Assays with concentrations of oleoyl-CoA up to 90 μM revealed an exponential response to increasing concentrations of acyl donor, and the introduction of increasing concentrations of unlabeled linoleoyl-CoA into the standard reaction mixture resulted in increased incorporation of radiolabeled oleoyl moieties into lysophosphatidic acid. Collectively, the kinetic results suggest that acyl-CoA may act as both substrate and allosteric effector. EaGPAT was also shown to oligomerize to form higher molecular mass multimers, with the monomer and trimer being the predominant forms of the enzyme. Since most allosteric enzyme exhibit quaternary structure, the self-associating properties of EaGPAT are consistent with those of an allosteric enzyme. These results could have important regulatory implications when plastidial GPAT is introduced into a cytoplasmic environment where acyl-CoA is the acyl donor supporting cytoplasmic glycerolipid assembly.
    Archives of Biochemistry and Biophysics 05/2014; DOI:10.1016/j.abb.2014.05.007 · 3.04 Impact Factor

Full-text

Download
85 Downloads
Available from
May 28, 2014