Article

Prediction of protein-protein interactions: unifying evolution and structure at protein interfaces.

Koc University, Center for Computational Biology and Bioinformatics, and College of Engineering, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey.
Physical Biology (Impact Factor: 3.14). 06/2011; 8(3):035006. DOI: 10.1088/1478-3975/8/3/035006
Source: PubMed

ABSTRACT The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.

0 Followers
 · 
101 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI.
    Progress in Biophysics and Molecular Biology 05/2014; 116(2-3). DOI:10.1016/j.pbiomolbio.2014.05.004 · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein-protein interfaces contain important information about molecular recognition. The discovery of conserved patterns is essential for understanding how substrates and inhibitors are bound and for predicting molecular binding. When an inhibitor binds to different enzymes (e.g. dissimilar sequences, structures or mechanisms what we call cross-inhibition), identification of invariants is a difficult task for which traditional methods may fail. To clarify how cross-inhibition happens, we model the problem, propose and evaluate a methodology called HydroPaCe to detect conserved patterns. Interfaces are modeled as graphs of atomic apolar interactions and hydrophobic patches are computed and summarized by centroids (HP-centroids), and their conservation is detected. Despite sequence and structure dissimilarity, our method achieves an appropriate level of abstraction to obtain invariant properties in cross-inhibition. We show examples in which HP-centroids successfully predicted enzymes that could be inhibited by the studied inhibitors according to BRENDA database. www.dcc.ufmg.br/~raquelcm/hydropace valdetemg@ufmg.br; raquelcm@dcc.ufmg.br; santoro@icb.ufmg.br Supplementary data are available at Bioinformatics online.
    Bioinformatics 02/2012; 28(3):342-9. DOI:10.1093/bioinformatics/btr680 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
    Bioengineered bugs 01/2011; 2(5):247-59. DOI:10.4161/bbug.2.5.17844