Article

Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae.

Department of Microbiology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
Journal of bacteriology (Impact Factor: 2.69). 05/2011; 193(14):3453-60. DOI: 10.1128/JB.00286-11
Source: PubMed

ABSTRACT Klebsiella pneumoniae is an opportunistic pathogen which frequently causes hospital-acquired urinary and respiratory tract infections. K. pneumoniae may establish these infections in vivo following adherence, using the type 3 fimbriae, to indwelling devices coated with extracellular matrix components. Using a colony immunoblot screen, we identified transposon insertion mutants which were deficient for type 3 fimbrial surface production. One of these mutants possessed a transposon insertion within a gene, designated mrkI, encoding a putative transcriptional regulator. A site-directed mutant of this gene was constructed and shown to be deficient for fimbrial surface expression under aerobic conditions. MrkI mutants have a significantly decreased ability to form biofilms on both abiotic and extracellular matrix-coated surfaces. This gene was found to be cotranscribed with a gene predicted to encode a PilZ domain-containing protein, designated MrkH. This protein was found to bind cyclic-di-GMP (c-di-GMP) and regulate type 3 fimbrial expression.

Download full-text

Full-text

Available from: Jeremiah Johnson, Aug 14, 2014
0 Followers
 · 
94 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Vibrio parahaemolyticus Scr system modulates decisions pertinent to surface colonization by affecting the cellular level of cyclic dimeric GMP (c-di-GMP). In this work, we explore the scope and mechanism of this regulation. Transcriptome comparison of ΔscrABC and wild-type strains revealed expression differences with respect to ∼100 genes. Elevated c-di-GMP repressed genes in the surface-sensing regulon, including those encoding the lateral flagellar and type III secretion systems and N-acetylglucosamine-binding protein GpbA while inducing genes encoding other cell surface molecules and capsular polysaccharide. The transcription of a few regulatory genes was also affected, and the role of one was characterized. Mutations in cpsQ suppressed the sticky phenotype of scr mutants. cpsQ encodes one of four V. parahaemolyticus homologs in the CsgD/VpsT family, members of which have been implicated in c-di-GMP signaling. Here, we demonstrate that CpsQ is a c-di-GMP-binding protein. By using a combination of mutant and reporter analyses, CpsQ was found to be the direct, positive regulator of cpsA transcription. This c-di-GMP-responsive regulatory circuit could be reconstituted in Escherichia coli, where a low level of this nucleotide diminished the stability of CpsQ. The molecular interplay of additional known cps regulators was defined by establishing that CpsS, another CsgD family member, repressed cpsR, and the transcription factor CpsR activated cpsQ. Thus, we are developing a connectivity map of the Scr decision-making network with respect to its wiring and output strategies for colonizing surfaces and interaction with hosts; in doing so, we have isolated and reproduced a c-di-GMP-sensitive regulatory module in the circuit.
    Journal of bacteriology 12/2011; 194(5):914-24. DOI:10.1128/JB.05807-11 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 3 fimbriae play a crucial role in Klebsiella pneumoniae biofilm formation, but the mechanism of the regulation of the type 3 fimbrial operon is largely unknown. In K. pneumoniae CG43, three regulatory genes, mrkH, mrkI and mrkJ, are located downstream of the type 3 fimbrial genes mrkABCDF. The production of the major pilin MrkA is abolished by the deletion of mrkH or mrkI but slightly increased by the deletion of mrkJ. Additionally, quantitative RT-PCR and a promoter-reporter assay of mrkHI verified that the transcription of mrkHI was activated by MrkI, suggesting autoactivation of mrkHI transcription. In addition, sequence analysis of the mrkH promoter region revealed a putative ferric uptake regulator (Fur) box. Deletion of fur decreased the transcription of mrkH, mrkI and mrkA. The expression of type 3 fimbriae and bacterial biofilm formation were also reduced by the deletion of fur. Moreover, a recombinant Fur was found to be able to bind both promoters, with higher affinity for P(mrkH) than P(mrkA), implying that Fur controls type 3 fimbriae expression via MrkHI. We also proved that iron availability can influence type 3 fimbriae activity.
    Microbiology 01/2012; 158(Pt 4):1045-56. DOI:10.1099/mic.0.053801-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.
    FEMS Immunology & Medical Microbiology 03/2012; 65(2):183-95. DOI:10.1111/j.1574-695X.2012.00960.x · 2.55 Impact Factor