HDAC4-Regulated STAT1 Activation Mediates Platinum Resistance in Ovarian Cancer

Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Edinburgh, United Kingdom.
Cancer Research (Impact Factor: 9.28). 05/2011; 71(13):4412-22. DOI: 10.1158/0008-5472.CAN-10-4111
Source: PubMed

ABSTRACT Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. Patients with NSCLC with EGFR-activating mutation benefit greatly by gefitinib, an EGFR tyrosine kinase inhibitor. However, acquired resistance limits its clinical use. Histone deacetylases (HDAC) are oncoproteins associated with cancer progression and drug resistance. Here, we disclosed that inhibition of HDAC1 induced protein phosphatase DUSP1 upregulation to overcome gefitinib-acquired resistance. The effect of HDAC1 inhibition restored gefitinib sensitivity was assessed by in vitro MTT and apoptotic assays, and in vivo xenograft and orthotopic lung cancer mouse models. Protein phosphatase array was used to detect DUSP1 expression. Immunohistochemical staining and quantitative PCR were used to analyze DUSP1 expression in clinical NSCLC specimens. Gefitinib-resistant NSCLC cells showed HDAC1 overexpression, and its knockdown sensitized resistant cells to gefitinib in vitro and in preclinical models through DUSP1 expression. Overexpression of DUSP1 in resistant cells restored gefitinib sensitivity by inhibiting EGFR signaling and inducing apoptosis, whereas its knockdown in sensitive cells conferred gefitinib resistance. A novel HDAC inhibitor, WJ-26210-2, in combination with gefitinib upregulated DUSP1 expression to exert in vitro and in vivo synergistic effect on inactivation of EGFR signaling, growth inhibition, and apoptosis. Clinically, high DUSP1 level was correlated with delayed emergence of gefitinib-acquired resistance. Decreased DUSP1 might be a mechanism responsible for gefitinib resistance, and DUSP1 might be a biomarker for gefitinib efficacy. HDAC1 inhibition-induced DUSP1 upregulation could be a promising strategy to overcome gefitinib-acquired resistance. Clin Cancer Res; 21(2); 428-38. ©2015 AACR. ©2015 American Association for Cancer Research.
    Clinical Cancer Research 01/2015; 21(2):428-38. DOI:10.1158/1078-0432.CCR-14-1150 · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of Oct4, a stemness gene encoding a transcription factor, has been reported in several cancers. However, the mechanism by which Oct4 directs transcriptional program that leads to somatic cancer progression remains unclear. In this study, we provide mechanistic insight into Oct4-driven transcriptional network promoting drug-resistance and metastasis in lung cancer cell, animal and clinical studies. Through an integrative approach combining our Oct4 chromatin-immunoprecipitation sequencing and ENCODE datasets, we identified the genome-wide binding regions of Oct4 in lung cancer at promoter and enhancer of numerous genes involved in critical pathways which promote tumorigenesis. Notably, PTEN and TNC were previously undefined targets of Oct4. In addition, novel Oct4-binding motifs were found to overlap with DNA elements for Sp1 transcription factor. We provided evidence that Oct4 suppressed PTEN in an Sp1-dependent manner by recruitment of HDAC1/2, leading to activation of AKT signaling and drug-resistance. In contrast, Oct4 transactivated TNC independent of Sp1 and resulted in cancer metastasis. Clinically, lung cancer patients with Oct4 high, PTEN low and TNC high expression profile significantly correlated with poor disease-free survival. Our study reveals a critical Oct4-driven transcriptional program that promotes lung cancer progression, illustrating the therapeutic potential of targeting Oc4 transcriptionally regulated genes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(3). DOI:10.1093/nar/gkv024 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is one of the most frequent cancer types and the leading cause of cancer death worldwide. Cisplatin is a widely used chemotherapeutic for non-small cell lung carcinoma (NSCLC), however, its positive effects are diminished under hypoxia. We wanted to determine if co-treatment with cisplatin and histone deacetalyse (HDAC) inhibitor panobinostat can reduce hypoxia-induced cisplatin resistance in NSCLC cells, and to elucidate mechanism involved. Expression status of different HDACS was determined in two cell lines and in tumor tissue from 20 patients. Cells were treated with cisplatin, panobinostat, or with combination of both under normoxic and hypoxic (1% O2) conditions. Cell cycle, viability, acetylation of histones, and activation of apoptosis were determined. HIF-1alpha stability and its interaction with HDAC4 were analyzed. Most class I and II HDACs were expressed in NSCLC cells and tumor samples. Co-treatment of tumor cells with cisplatin and panobinostat decreased cell viability and increased apoptosis more efficiently than in primary, non-malignant bronchial epithelial cells. Co-treatment induced apoptosis by causing chromatin fragmentation, activation of caspases-3 and 7 and PARP cleavage. Toxic effects were more pronounced under hypoxic conditions. Co-treatment resulted in destabilization and degradation of HIF-1alpha and HDAC4, a protein responsible for acetylation and de/stabilization of HIF-1alpha. Direct interaction between HDAC4 and HIF-1alpha proteins in H23 cells was detected. Here we show that hypoxia-induced cisplatin resistance can be overcome by combining cisplatin with panobinostat, a potent HDAC inhibitor. These findings may contribute to the development of a new therapeutic strategy for NSCLC.