Article

Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
Developmental Cell (Impact Factor: 10.37). 05/2011; 20(5):597-609. DOI: 10.1016/j.devcel.2011.04.008
Source: PubMed

ABSTRACT Hematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors--GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL--in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes.

0 Followers
 · 
149 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.
    Development 09/2014; 141(20). DOI:10.1242/dev.115709 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) are characterized by the capacity for self-renewal and the ability to reconstitute the entire hematopoietic compartment. Thrombopoietin maintains adult HSCs in a quiescent state through the induction of cell cycle inhibitors p57(Kip2) and p19(INK4d). Using the p19(INK4d-/-) mouse model, we investigated the role of p19(INK4d) in basal and stress-induced hematopoiesis. We demonstrate that p19(INK4d) is involved in the regulation of HSC quiescence by inhibition of the G0/G1 cell cycle transition. Under genotoxic stress conditions, the absence of p19(INK4d) in HSCs leads to accelerated cell cycle exit, accumulation of DNA double-strand breaks, and apoptosis when cells progress to the S/G2-M stages of the cell cycle. Moreover, p19(INK4d) controls the HSC microenvironment through negative regulation of megakaryopoiesis. Deletion of p19(INK4d) results in megakaryocyte hyperproliferation and increased transforming growth factor β1 secretion. This leads to fibrosis in the bone marrow and spleen, followed by loss of HSCs during aging. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
    11/2014; 3(6). DOI:10.1016/j.stemcr.2014.10.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular pathways that regulate megakaryocyte production have historically been identified through multiple candidate gene approaches. Several transcription factors critical for generating megakaryocytes were identified by promoter analysis of megakaryocyte-specific genes, and their biological roles then verified by gene knockout studies; for example, GATA-1, NF-E2, and RUNX1 were identified in this way. In contrast, other transcription factors important for megakaryopoiesis were discovered through a systems approach; for example, c-Myb was found to be critical for the erythroid versus megakaryocyte lineage decision by genome-wide loss-of-function studies. The regulation of the levels of these transcription factors is, for the most part, cell intrinsic, although that assumption has recently been challenged. Epigenetics also impacts megakaryocyte gene expression, mediated by histone acetylation and methylation. Several cytokines have been identified to regulate megakaryocyte survival, proliferation, and differentiation, most prominent of which is thrombopoietin. Upon binding to its receptor, the product of the c-Mpl proto-oncogene, thrombopoietin induces a conformational change that activates a number of secondary messengers that promote cell survival, proliferation, and differentiation, and down-modulate receptor signaling. Among the best studied are the signal transducers and activators of transcription (STAT) proteins; phosphoinositol-3-kinase; mitogen-activated protein kinases; the phosphatases PTEN, SHP1, SHP2, and SHIP1; and the suppressors of cytokine signaling (SOCS) proteins. Additional signals activated by these secondary mediators include mammalian target of rapamycin; β(beta)-catenin; the G proteins Rac1, Rho, and CDC42; several transcription factors, including hypoxia-inducible factor 1α(alpha), the homeobox-containing proteins HOXB4 and HOXA9, and a number of signaling mediators that are reduced, including glycogen synthase kinase 3α(alpha) and the FOXO3 family of forkhead proteins. More recently, systematic interrogation of several aspects of megakaryocyte formation have been conducted, employing genomics, proteomics, and chromatin immunoprecipitation (ChIP) analyses, among others, and have yielded many previously unappreciated signaling mechanisms that regulate megakaryocyte lineage determination, proliferation, and differentiation. This chapter focuses on these pathways in normal and neoplastic megakaryopoiesis, and suggests areas that are ripe for further study.
    Advances in Experimental Medicine and Biology 01/2014; 844:59-84. DOI:10.1007/978-1-4939-2095-2_4 · 2.01 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 22, 2014

Anagha Joshi