Article

Sound-contingent visual motion aftereffect

Department of Psychology, Rikkyo University, Niiza-shi, Saitama, 352-8558 Japan.
BMC Neuroscience (Impact Factor: 2.85). 05/2011; 12:44. DOI: 10.1186/1471-2202-12-44
Source: PubMed

ABSTRACT After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion), one of the signals (color) becomes a driver for the other signal (motion). This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound.
Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days.
These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.
    Frontiers in Integrative Neuroscience 01/2015; 9:26. DOI:10.3389/fnint.2015.00026
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The brain tends to associate specific features of stimuli across sensory modalities. The pitch of a sound is for example associated with spatial elevation such that higher-pitched sounds are felt as being "up" in space and lower-pitched sounds as being "down." Here we investigated whether changes in the pitch of sounds could be effective for visual motion perception similar to those in the location of sounds. We demonstrated that only sounds that alternate in up/down location induced illusory vertical motion of a static visual stimulus, while sounds that alternate in higher/lower pitch did not induce this illusion. The pitch of a sound did not even modulate the visual motion perception induced by sounds alternating in up/down location. Interestingly, though, sounds alternating in higher/lower pitch could become a driver for visual motion if they were paired in a previous exposure phase with vertical visual apparent motion. Thus, only after prolonged exposure, the pitch of a sound became an inducer for upper/lower visual motion. This occurred even if during exposure the pitch and location of the sounds were paired in an incongruent fashion. These findings indicate that pitch-space correspondence is not so strong to drive or modulate visual motion perception. However, associative exposure could increase the saliency of pitch-space relationships and then the pitch could induce visual motion perception by itself.
    Experimental Brain Research 09/2013; DOI:10.1007/s00221-013-3674-2 · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Senses of smells are often accompanied by simultaneous visual sensations. Previous studies have documented enhanced olfactory performance with concurrent presence of congruent color- or shape- related visual cues, and facilitated visual object perception when congruent smells are simultaneously present. These visual object-olfaction interactions suggest the existences of couplings between the olfactory pathway and the visual ventral processing stream. However, it is not known if olfaction can modulate visual motion perception, a function that is related to the visual dorsal stream. We tested this possibility by examining the influence of olfactory cues on the perceptions of ambiguous visual motion signals. We showed that, after introducing an association between motion directions and olfactory cues, olfaction could indeed bias ambiguous visual motion perceptions. Our result that olfaction modulates visual motion processing adds to the current knowledge of cross-modal interactions and implies a possible functional linkage between the olfactory system and the visual dorsal pathway.
    Scientific Reports 07/2014; 4:5796. DOI:10.1038/srep05796 · 5.08 Impact Factor

Full-text (4 Sources)

Download
38 Downloads
Available from
May 19, 2014