Feasibility of magnetic bead technology for concentration of mycobacteria in sputum prior to fluorescence microscopy

FIND, Foundation for Innovative New Diagnostics, Kampala, Uganda.
BMC Infectious Diseases (Impact Factor: 2.56). 05/2011; 11:125. DOI: 10.1186/1471-2334-11-125
Source: PubMed

ABSTRACT Direct sputum smear microscopy is the mainstay of TB diagnosis in most low and middle income countries, and is highly specific for Mycobacterium tuberculosis in such settings. However it is limited by low sensitivity, particularly in HIV co-infected patients. Concentration by centrifugation has been reported to be more sensitive than direct smear preparation, but is only suitable for referral laboratories. Simpler concentration methods that could be applied in peripheral laboratories are urgently needed.
We evaluated the feasibility of an early prototype ligand-coated magnetic bead technology to concentrate M. tuberculosis prior to detection by LED-based fluorescence microscopy compared with direct Ziehl-Neelsen microscopy and direct and concentrated fluorescence microscopy in a reference laboratory in Kampala, Uganda. Results were compared with MGIT 960 liquid culture and Lowenstein-Jensen culture.
Compared to culture, concentrated FM had significantly higher sensitivity than direct ZN (74.8% and 51.4%), magnetic bead-FM (65.4%) and direct FM (58.9%). The sensitivity of magnetic bead FM was significantly higher than direct ZN (p<0.001) but not significantly higher than direct FM (p=0.210). The specificity of magnetic bead FM and concentrated FM was significantly lower than direct ZN (88.6%, 94.3% and 98.9% respectively) and direct FM (99.4%). There was no significant difference in specificity between magnetic bead FM and concentrated FM. Allowing for blinded resolution of discrepant results, the specificity of magnetic bead FM increased to 93.1%. Direct microscopy was simpler than concentrated FM and Magnetic bead FM which both had a similar number of steps.
The sensitivity of the early prototype magnetic bead FM was lower than concentrated FM, similar to direct FM, and significantly higher than direct ZN. Both magnetic bead and concentration by centrifugation led to reduced specificity compared with the direct smear methods. Some magnetic bead FM false positive results were not easily explained and should be further investigated. The prototype version of the magnetic bead procedure tested here was of similar complexity to concentration by centrifugation. As such, if the sensitivity of the magnetic bead FM could be improved in future versions of the technology, this may offer a viable alternative to centrifugation.


Available from: Heidi Albert, Sep 17, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) is an ancient disease with an enormous global impact. Despite declining global incidence, the diagnosis, phenotyping, and epidemiological investigation of TB require significant clinical microbiology laboratory resources. Current methods for the detection and characterization of Mycobacterium tuberculosis consist of a series of laboratory tests varying in speed and performance, each of which yields incremental information about the disease. Since the sequencing of the first M. tuberculosis genome in 1998, genomic tools have aided in the diagnosis, treatment, and control of TB. Here we summarize genomics-based methods that are positioned to be introduced in the modern clinical TB laboratory, and we highlight how recent advances in genomics will improve the detection of antibiotic resistance-conferring mutations and the understanding of M. tuberculosis transmission dynamics and epidemiology. We imagine the future TB clinic as one that relies heavily on genomic interrogation of the M. tuberculosis isolate, allowing for more rapid diagnosis of TB and real-time monitoring of outbreak emergence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Clinical microbiology reviews 04/2015; 28(2):523-539. DOI:10.1128/CMR.00124-14 · 16.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite suffering from the major disadvantage of low sensitivity, microscopy of direct smear with the Ziehl-Neelsen stain is still broadly used for detection of acid-fast bacilli and diagnosis of tuberculosis. Here, we present a unique detection method of Mycobacterium tuberculosis (MTB) using surface functionalized magnetic microspheres (MMSs) coupled with quantum dots (QDs), conjugated with various antibodies and phage display-derived peptides. The principle is based upon the conformation of the sandwich complex composed of bacterial cells, MMSs, and QDs. The complex system is tagged with QDs for providing the fluorescent signal as part of the detection while magnetic separation is achieved by MMSs. The peptide ligand H8 derived from the phage display library Ph.D.-7 is developed for MTB cells. Using the combinations of MMS-polyclonal antibody+QD-H8 and MMS-H8+QD-H8, a strong signal of 10(3) colony forming units (CFU)/mL H37Rv was obtained with improved specificity. MS-H8+QD-H8 combination was further optimized by adjusting the concentrations of MMSs, QDs, and incubation time for the maximum detection signal. The limit of detection for MTB was found to reach 10(3) CFU/mL even for the sputum matrices. Positive sputum samples could be distinguished from control. Thus, this novel method is shown to improve the detection limit and specificity of MTB from the sputum samples, and to reduce the testing time for accurate diagnosis of tuberculosis, which needs further confirmation of more clinical samples.
    International Journal of Nanomedicine 01/2015; 10:77-88. DOI:10.2147/IJN.S71700 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electric detection using a nanocomponent may lead to platforms for rapid and simple biosensing. Sensors composed of nanotips or nanodots have been described for highly sensitive amperometry enabled by confined geometry. However, both fabrication and use of nanostructured sensors remain challenging. This paper describes a dendritic nanotip used as an amperometric biosensor for highly sensitive detection of target bacteria. A dendritic nanotip is structured by Si nanowires coated with single-walled carbon nanotubes (SWCNTs) for generation of a high electric field. For reliable measurement using the dendritic structure, Si nanowires were uniformly fabricated by ultraviolet (UV) lithography and etching. The dendritic structure effectively increased the electric current density near the terminal end of the nanotip according to numerical computation. The electrical characteristics of a dendritic nanotip with additional protein layers was studied by cyclic voltammetry and I-V measurement in deionized (DI) water. When the target bacteria dielectrophoretically captured onto a nanotip were bound with fluorescence antibodies, the electric current through DI water decreased. Measurement results were consistent with fluorescence- and electron microscopy. The sensitivity of the amperometry was 10 cfu/sample volume (10(3) cfu/mL), which was equivalent to the more laborious fluorescence measurement method. The simple configuration of a dendritic nanotip can potentially offer an electrolyte-free detection platform for sensitive and rapid biosensors.
    RSC Advances 01/2013; 3(13):4281-4287. DOI:10.1039/C3RA40262B · 3.71 Impact Factor