Article

Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis

Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
Cell (Impact Factor: 33.12). 05/2011; 145(4):607-21. DOI: 10.1016/j.cell.2011.03.043
Source: PubMed

ABSTRACT Class IIa histone deacetylases (HDACs) are signal-dependent modulators of transcription with established roles in muscle differentiation and neuronal survival. We show here that in liver, class IIa HDACs (HDAC4, 5, and 7) are phosphorylated and excluded from the nucleus by AMPK family kinases. In response to the fasting hormone glucagon, class IIa HDACs are rapidly dephosphorylated and translocated to the nucleus where they associate with the promoters of gluconeogenic enzymes such as G6Pase. In turn, HDAC4/5 recruit HDAC3, which results in the acute transcriptional induction of these genes via deacetylation and activation of FOXO family transcription factors. Loss of class IIa HDACs in murine liver results in inhibition of FOXO target genes and lowers blood glucose, resulting in increased glycogen storage. Finally, suppression of class IIa HDACs in mouse models of type 2 diabetes ameliorates hyperglycemia, suggesting that inhibitors of class I/II HDACs may be potential therapeutics for metabolic syndrome.

Download full-text

Full-text

Available from: Michael Downes, Jul 03, 2015
0 Followers
 · 
186 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aerobic glycolysis (the Warburg effect) is a core hallmark of cancer, but the molecular mechanisms underlying it remain unclear. Here, we identify an unexpected central role for mTORC2 in cancer metabolic reprogramming where it controls glycolytic metabolism by ultimately regulating the cellular level of c-Myc. We show that mTORC2 promotes inactivating phosphorylation of class IIa histone deacetylases, which leads to the acetylation of FoxO1 and FoxO3, and this in turn releases c-Myc from a suppressive miR-34c-dependent network. These central features of activated mTORC2 signaling, acetylated FoxO, and c-Myc levels are highly intercorrelated in clinical samples and with shorter survival of GBM patients. These results identify a specific, Akt-independent role for mTORC2 in regulating glycolytic metabolism in cancer.
    Cell metabolism 10/2013; 18(5). DOI:10.1016/j.cmet.2013.09.013 · 16.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxo1 is a critical, direct regulator of Rag (recombination activating gene) transcription during B cell development and is thus essential for the generation of a diverse repertoire of antigen receptors. Although Foxo1 regulation has been widely studied in many cell types, pathways regulating Foxo1 in B cells have not been fully elucidated. By screening a panel of Foxo1 mutants, we identified serine 215 on Foxo1 as a novel phosphorylation site that is essential for the activation of Rag transcription. Mutation of S215 strongly attenuated transactivation of Rag but did not affect most other Foxo1 target genes. We show that MK5, a MAPK-activated protein kinase, is a previously unidentified upstream regulator of Foxo1. MK5 was necessary and sufficient to activate Rag transcription in transformed and primary pro-B cells. Together, our experiments show that MK5 positively regulates Rag transcription via phosphorylation of Foxo1 in developing B cells.
    Journal of Experimental Medicine 07/2013; 210(8). DOI:10.1084/jem.20130498 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression changes of liver X receptor alpha (LXRα), histone deacetylase 3 (HDAC3) and CCAAT/enhancer binding protein alpha (C/EBPα) were detected in liver tissues of our high-fat-diet E3 rat model. The aim of this study is to pinpoint the molecular mechanism of HDAC3 and C/EBPα to orchestrate LXRα expression in hepatocytes. We confirmed that LXRα and its target genes were negatively regulated by HDAC3 in stable expressed clones with pEGFP-Hdac3 or shRNA-Hdac3 vector. However, transient pEGFP-C/EBPα transfection showed an upregulation of LXRα expression and C/EBPα enhanced LXRα promoter activity in a dose-dependent manner in CBRH-7919 cells. By using 5'-serial deletion reporter analysis, we identified that fragment from -2881 to -1181 bp of LXRα promoter was responsible for C/EBPα binding to the promoter, especially CBS1 and CBS4 were identified essentially by using ChIP and luciferase reporter assay. Co-IP, qRT-PCR and ChIP revealed that HDAC3 interacted with C/EBPα co-regulated LXRα expression. Sumoylation of C/EBPα at lysine 159 was detected in CBRH-7919 cells with transient overexpressed C/EBPα, and Co-IP assay detected that sumoylated C/EBPα interacted with more HDAC3 than C/EBPα K159L mutant. Luciferase reporter assay demonstrated that C/EBPα participated in HDAC3-repressed LXRα transcription, and HDAC3 was involved in sumoylated C/EBPα-inactivated LXRα activity. Luciferase reporter assay demonstrated that sumoylation of C/EBPα by SUMO-1 directly reversed the activation of C/EBPα on LXRα promoter. The results suggested that HDAC3 interacts with sumoylated C/EBPα to negatively regulate the LXRα expression.
    Molecular and Cellular Endocrinology 04/2013; 374(1-2). DOI:10.1016/j.mce.2013.04.013 · 4.24 Impact Factor