Comparisons of Apolipoprotein B Levels Estimated by Immunoassay, Nuclear Magnetic Resonance, Vertical Auto Profile, and Non-High-Density Lipoprotein Cholesterol in Subjects With Hypertriglyceridemia (SAFARI Trial)

Center for Human Nutrition, Departments of Internal Medicine and Clinical Nutrition, University of Texas Southwestern Medical Center, and Metabolic Unit, Veterans Affairs Medical Center, Dallas, Texas, USA.
The American journal of cardiology (Impact Factor: 3.43). 07/2011; 108(1):40-6. DOI: 10.1016/j.amjcard.2011.03.003
Source: PubMed

ABSTRACT Low-density lipoprotein (LDL) cholesterol and triglyceride-rich lipoproteins constitute non-high-density lipoprotein (non-HDL) cholesterol. These are atherogenic lipoproteins and non-HDL cholesterol is a secondary target of treatment beyond LDL cholesterol in patients with hypertriglyceridemia. Some investigators favor total apolipoprotein B over non-HDL cholesterol as the secondary target of treatment. This is based on publications suggesting that total apolipoprotein B is more predictive of cardiovascular events than non-HDL cholesterol. Several methods are available for estimating total apolipoprotein B. This study compared total apolipoprotein estimated by immunonephelometric assay (INA), vertical auto profile (VAP), nuclear magnetic resonance (NMR), and non-HDL cholesterol levels in patients with hypertriglyceridemia from the previously reported Simvastatin plus Fenofibrate for Combined Hyperlipidemia (SAFARI) trial. Total apolipoprotein B levels were found to be highest by INA, intermediate by NMR and non-HDL cholesterol, and lowest by VAP. Concordance for non-HDL cholesterol levels among the INA, VAP, and NMR methods was better than that for total apolipoprotein B levels; the correlation between non-HDL cholesterol and apolipoprotein B by INA was strongest (0.929). In patients with a low triglyceride/HDL cholesterol ratio (<3.5), total apolipoprotein B determined by INA was higher than that estimated from non-HDL cholesterol levels, whereas in patients with a high triglyceride/HDL C ratio (≥3.5), apolipoprotein B predicted using non-HDL cholesterol was in better agreement with INA-determined apolipoprotein B levels. Similar trends were observed with VAP using equations specific for LDL particle size. In conclusion, more work is needed to improve agreement of apolipoprotein B measurements among methods employed clinically. Non-HDL cholesterol is also useful to predict total apolipoprotein B and some improvement may be attained by taking into account the ratio of triglyceride/HDL cholesterol as a measurement of LDL particle size.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced lipid testing has been suggested by some experts to identify patients with substantial residual risk for more aggressive targeting of lifestyle and pharmacologic therapies. It measures the subpopulation of lipoproteins and apolipoproteins, which include lipoprotein (a), apolipoprotein A-I, and apolipoprotein B, and measures of lipoprotein particle composition such as LDL particle (LPL-P) and HDL particle (HDL-P) number and size. Obesity is associated with smaller LDL-P and HDL-P sizes. Moderate weight loss via fasting/calorie restriction is associated with LDL-P size increase, whereas moderate weight loss via endurance exercise is associated with HDL-P size increase. Diets high in carbohydrates are associated with a more atherogenic advanced lipoprotein profile characterized by smaller LDL-P and HDL-P sizes. In summary, lifestyle changes such as weight loss, exercise, and dietary modification correlate with improvement in the profile of advanced lipoproteins. Regrettably, therapies targeting HDL and HDL composition have been disappointing to date.
    Current Atherosclerosis Reports 03/2014; 16(3):394. DOI:10.1007/s11883-013-0394-9 · 3.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intent of this review is to update the science of emerging cardiometabolic risk factors that were listed in the National Cholesterol Education Program (NCEP) Adult Treatment Panel-III (ATP-III) report of 2001 (updated in 2004). At the time these guidelines were published, the evidence was felt to be insufficient to recommend these risk factors for routine screening of cardiovascular disease risk. However, the panel felt that prudent use of these biomarkers for patients at intermediate risk of a major cardiovascular event over the subsequent 10 years might help identify patients who needed more aggressive low density lipoprotein (LDL) or non-high density lipoprotein (HDL) cholesterol lowering therapy. While a number of other emerging risk factors have been identified, this review will be limited to assessing the data and recommendations for the use of apolipoprotein B, lipoprotein (a), homocysteine, pro-thrombotic factors, inflammatory factors, impaired glucose metabolism, and measures of subclinical atherosclerotic cardiovascular disease for further cardiovascular disease risk stratification.
    BMC Medicine 08/2014; 12(1):115. DOI:10.1186/1741-7015-12-115 · 7.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intentional weight loss, by reducing insulin resistance, results in both better glycemic control and decreased need for anti-diabetic medications. However, not everyone who is successful with weight loss is able to reduce anti-diabetic medication use. In this retrospective cohort study, we assessed the predictive accuracy of baseline triglyceride (TGL)/HDL ratio, a marker of insulin resistance, to screen patients for success in reducing anti-diabetic medication use with weight loss. Case records of 121 overweight and obese attendees at two outpatient weight management centers were analyzed. The weight loss intervention consisted of a calorie-restricted diet (~1000Kcal/day deficit), a behavior modification plan, and a plan for increasing physical activity. Mean period of follow-up was 12.5 ± 3.5 months. By study exit, mean weight loss and mean HbA1c% reduction were 15.4 ± 5.5 kgs and 0.5 ± 0.2% respectively. 81 (67%) in the study cohort achieved at least 1 dose reduction of any anti-diabetic medication. Tests for predictive accuracy of baseline TGL/HDL ratio ≤ 3 to determine success with dose reductions of anti-diabetic medications showed a sensitivity, specificity, positive predictive value, negative predictive value, area under the curve, likelihood ratio (LR) + and LR-of 81, 83, 90, 70, 78, 4.8 and 0.2, respectively. Reproducibility of TGL/HDL ratio was acceptable. TGL/HDL ratio shows promise as an effective screening tool to determine success with dose reductions of anti-diabetic medications. The results of our study may inform the conduct of a systematic review using data from prior weight loss trials.
    PLoS ONE 07/2013; 8(7):e69285. DOI:10.1371/journal.pone.0069285 · 3.53 Impact Factor