Article

The expression of BST2 in human and experimental mouse brain tumors.

The Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
Experimental and Molecular Pathology (Impact Factor: 2.88). 05/2011; 91(1):440-6. DOI: 10.1016/j.yexmp.2011.04.012
Source: PubMed

ABSTRACT Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 expression is upregulated at both the mRNA and protein level in high grade when compared to low grade human astrocytoma (p<0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p<0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2±preincubated with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA±preincubated with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model.

0 Followers
 · 
153 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Bone marrow stromal cell antigen 2 (BST2) was one of the proteins which were found related to tumor metastasis in our previous proteomic study. Now we want to examine its clinical role on the oral cavity squamous cell carcinomas (OSCC).Study Design: Individual retrospective cohort study and basic research.Methods: Immunohistochemical analysis, Western blotting, and quantitative real-time polymerase chain reaction were used to demonstrate the expression levels of BST2 on 159 OSCC tumors. RNA interference was utilized for cell migration and proliferation study in vitro.Results: BST2 expression was significantly higher in OSCC cells of metastatic lymph nodes and primary tumor cells, compared to adjacent normal epithelia. Higher BST2 expression was associated with positive N stage, advanced overall stage, perineural invasion, and tumor depth (P = 0.049, 0.015, 0.021, and 0.010, respectively). OSCC patients with higher BST2 expression had poorer prognosis for disease-specific and disease-free survival (P = 0.009 and 0.001, respectively). Multivariate analyses also demonstrated that higher BST2 expression is an independent prognostic factor of disease-specific and disease-free survival (P = 0.047 and 0.013, respectively). In-vitro suppression of BST2 expression in OEC-M1 cells showed that BST2 contributes to tumor migration of OSCC cells.Conclusions: The findings in this study indicate that BST2 expression in OSCC tumors is an independent prognostic factor of patient survival and associated with tumor metastasis.
    The Laryngoscope 09/2014; 124(9). DOI:10.1002/lary.24700 · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite new treatment modalities, the clinical outcome in a substantial number of patients with multiple myeloma (MM) has yet to be improved. Antibody-based targeted therapies for myeloma patients could make use of the HM1.24 antigen (CD317), a surface molecule overexpressed on malignant plasma cells and efficiently internalized. Here, a novel immunotoxin, HM1.24-ETA', is described. HM1.24-ETA' was generated by genetic fusion of a CD317-specific single-chain Fv (scFv) antibody and a truncated variant of Pseudomonas aeruginosa exotoxin A (ETA'). HM1.24-ETA' inhibited growth of interleukin 6 (IL-6)-dependent and -independent myeloma cell lines. Half-maximal growth inhibition was observed at concentrations as low as 0.3 nM. Target cell killing occurred via induction of apoptosis and was unaffected in co-culture experiments with bone marrow stromal cells. HM1.24-ETA' efficiently triggered apoptosis of freshly isolated/cryopreserved cells of patients with plasma cell leukemia and MM and was active in a preclinical severe combined immunodeficiency (SCID) mouse xenograft model. Importantly, HM1.24-ETA' was not cytotoxic against CD317-positive cells from healthy tissue (monocytes, human umbilical vein endothelial cells). These results indicate that CD317 may represent a promising target structure for specific and efficient immunotoxin therapy for patients with plasma cell tumors.
    Blood Cancer Journal 06/2014; 4:e219. DOI:10.1038/bcj.2014.38 · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionSeveral innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers.Methods Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion.ResultsBST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion.ConclusionBST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.
    Breast cancer research: BCR 12/2014; 16(6):493. DOI:10.1186/s13058-014-0493-8 · 5.88 Impact Factor

Preview

Download
3 Downloads
Available from

Similar Publications