Article

Preface to the special issue: advances in the analysis of spatial genetic data.

Laboratoire d'Ecologie Alpine, UMR CNRS 5553, BP 53, Université Joseph Fourier, Grenoble, France.
Molecular Ecology Resources (Impact Factor: 7.43). 09/2010; 10(5):757-9. DOI: 10.1111/j.1755-0998.2010.02899.x
Source: PubMed
0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular genetic techniques have been used in freshwater biology for more than 30 years. Early work focussed on studies of population structure, systematics and taxonomy. More recently, the range of studies has broadened to include ecology and adaptation. Advances in analytical methods and in technology (e.g. next-generation sequencing) and decreasing costs of data production ensure that the field will continue to develop and broaden in scope.At least three factors make the application of molecular techniques to freshwater biology exciting. First, the highly variable nature of many aquatic habitats makes them excellent models for the study of environmental change on ecological and evolutionary time scales. Second, the mature state of the field of freshwater biology provides an extensive foundation of ecological knowledge of freshwater organisms and their distinct adaptations. Third, the methodological advances allow researchers to focus more on merging molecular and ecological research and less on designing studies around technical limitations.We identified eight research areas in freshwater biology in which the integration of molecular and ecological approaches provides exceptional opportunities. The list is not exhaustive, but considers a broad range of topics and spans the continuum from basic to applied research. The areas identified use a combination of natural, experimental and in silico approaches.With advancing molecular techniques, freshwater biology is in an unusually strong position to link the genetic basis and ecological importance of adaptations across a wide range of taxa, ecosystems and spatiotemporal scales. Our aim was to identify opportunities for the integration of molecular and ecological approaches, to motivate greater collaboration and crossover, and to promote exploitation of the synergies of bridging ecological and evolutionary freshwater research.
    Freshwater Biology 04/2014; 59(8):1559-1576. · 3.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The field of phylogeography continues to grow in terms of power and accessibility. Initially uniting population genetics and phylogenetics, it now spans disciplines as diverse as geology, statistics, climatology, ecology, physiology, and bioinformatics to name a few. One major and recent integration driving the field forward is between "statistical phylogeography" and Geographic Information Systems (GIS) (Knowles, 2009). Merging genetic and geospatial data, and their associated methodological toolkits, is helping to bring explicit hypothesis testing to the field of phylogeography. Hypotheses derived from one approach can be reciprocally tested with data derived from the other field and the synthesis of these data can help place demographic events in an historical and spatial context, guide genetic sampling, and point to areas for further investigation. Here, we present three practical examples of empirical analysis that integrate statistical genetic and GIS tools to construct and test phylogeographic hypotheses. Insights into the evolutionary mechanisms underlying recent divergences can benefit from simultaneously considering diverse types of information to iteratively test and reformulate hypotheses. Our goal is to provide the reader with an introduction to the variety of available tools and their potential application to typical questions in phylogeography with the hope that integrative methods will be more broadly and commonly applied to other biological systems and data sets.
    Molecular Phylogenetics and Evolution 02/2011; 59(2):523-37. · 4.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary processes that produce adaptive radiations are enigmatic. They can only be studied after the fact, once a radiation has occurred and been recognized, rather than while the processes are ongoing. One way to connect pattern to process is to study the processes driving divergence today among populations of species that belong to an adaptive radiation, and compare the results to patterns observed at a deeper, macroevolutionary level. We tested whether evolution is a deterministic process with similar outcomes during different stages of the adaptive radiation of Anolis lizards. Using a clade of terrestrial-scansorial lizards in the genus Anolis, we inferred the adaptive basis of spatial variation among contemporary populations and tested whether axes of phenotypic differentiation among them mirror known axes of diversification at deeper levels of the anole radiation. Nonparallel change associated with genetic divergence explains the vast majority of geographic variation. However, we found phenotypic variation to be adaptive as confirmed by convergence in populations occurring in similar habitats in different mountain ranges. Morphological diversification among populations recurs deterministically along two axes of diversification previously identified in the anole radiation, but the characters involved differ from those involved in adaptation at higher levels of anole phylogeny.
    Evolution 11/2013; 67(11):3175-90. · 4.86 Impact Factor