Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge

Department of Civil and Environmental Engineering, Graduate School of Engineering, Gunma University, Kiryu, Japan.
The ISME Journal (Impact Factor: 9.27). 05/2011; 5(12):1844-56. DOI: 10.1038/ismej.2011.59
Source: PubMed

ABSTRACT Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

Download full-text


Available from: Satoshi Okabe, Jul 15, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ecophysiology of long-chain fatty acid-degrading syntrophic β-oxidizing bacteria has been poorly understood due to a lack of quantitative abundance data. Here, TaqMan quantitative PCR (qPCR) assays targeting the 16S rRNA gene of the known mesophilic syntrophic β-oxidizing bacterial genera Syntrophomonas and Syntrophus were developed and validated. Microbial community dynamics were followed using qPCR and Illumina-based high-throughput amplicon sequencing in triplicate methanogenic bioreactors subjected to five consecutive batch feedings of oleic acid. With repeated oleic acid feeding, the initial specific methane production rate significantly increased along with the relative abundances of Syntrophomonas and methanogenic archaea in the bioreactor communities. The novel qPCR assays showed that Syntrophomonas increased from 7 to 31% of the bacterial community 16S rRNA gene concentration, whereas that of Syntrophus decreased from 0.02 to less than 0.005%. High-throughput amplicon sequencing also revealed that Syntrophomonas became the dominant genus within the bioreactor microbiomes. These results suggest that increased specific mineralization rates of oleic acid were attributed to quantitative shifts within the microbial communities toward higher abundances of syntrophic β-oxidizing bacteria and methanogenic archaea. The novel qPCR assays targeting syntrophic β-oxidizing bacteria may thus serve as monitoring tools to indicate the fatty acid β-oxidization potential of anaerobic digester communities. © FEMS 2015. All rights reserved. For permissions, please e-mail:
    FEMS Microbiology Ecology 04/2015; 91(4). DOI:10.1093/femsec/fiv028 · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaerobic digestion processes (AD) are known to effectively convert organic waste to CO2 and CH4, but much of the microbial ecology remains unclear. Specifically, we have limited insights into symbiotic syntroph and methanogen (“syntrophy”) acid degradation, though they are essential for preventing process deterioration. Also we often observed many uncharacterized or uncultivated organisms but poorly understood their role(s) in related to syntrophy. To define syntrophy-associated populations, this study enriched methanogenic communities with propionate, butyrate, benzoate, acetate, formate, and H2 from two different inocula over 3 years. 16S pyrotag analysis revealed core populations of known syntrophs (6 clades) and methanogens (9 clades) associated with acid degradation, and evidence for substrate and/or inoculum dependent specificity in syntrophic partnerships. Based on comprehensive reevaluation of publically available microbial community data for AD, the known syntrophs and methanogens identified were clearly representatives of the AD-associated syntrophs and methanogens. In addition, uncultivated clades related to Bacteroidetes, Firmicutes, Actinobacteria, and Chloroflexi were ubiquitously found in AD and enrichments. These organisms may be universally involved in AD syntrophic degradation, but only represented <23% of the yet-to-be-cultivated organisms (89 of 390 clades). Thus, the contribution of these uncultured organisms in AD remains unclear and warrants further investigation.
    Environmental Microbiology 09/2014; 17(5). DOI:10.1111/1462-2920.12616 · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
    Journal of Bioscience and Bioengineering 10/2014; 119(4). DOI:10.1016/j.jbiosc.2014.09.014 · 1.79 Impact Factor