Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine.

Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
Nature (Impact Factor: 42.35). 05/2011; 473(7348):523-7. DOI: 10.1038/nature10003
Source: PubMed

ABSTRACT The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular Tat (eTat) plays an important role in HIV-1 pathogenesis. The presence of anti-Tat antibodies is negatively correlated with disease progression, hence making Tat a potential vaccine candidate. The cytotoxicity and moderate immunogenicity of Tat however remain impediments for developing Tat-based vaccines. Here, we report a novel strategy to concurrently enhance the immunogenicity and safety profile of Tat. The grafting of universal helper T-lymphocyte (HTL) epitopes, Pan DR Epitope (PADRE) and Pol711 into the cysteine rich domain (CRD) and the basic domain (BD) abolished the transactivation potential of the Tat protein. The HTL-Tat proteins elicited a significantly higher titer of antibodies as compared to the wild-type Tat in BALB/c mice. While the N-terminal epitope remained immunodominant in HTL-Tat immunizations, an additional epitope in exon-2 was recognized with comparable magnitude suggesting a broader immune recognition. Additionally, the HTL-Tat proteins induced cross-reactive antibodies of high avidity that efficiently neutralized exogenous Tat, thus blocking the activation of a Tat-defective provirus. With advantages such as presentation of multiple B-cell epitopes, enhanced antibody response and importantly, transactivation-deficient Tat protein, this approach has potential application for the generation of Tat-based HIV/AIDS vaccines.
    PLoS ONE 12/2014; · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An effective T-cell-based AIDS vaccine should induce strong HIV-specific CD8(+) T cells in mucosal tissues without increasing the availability of target cells for the virus. Here, we evaluated five immunization strategies that include Human adenovirus-5 (AdHu5), Chimpanzee adenovirus-6 (AdC6) or -7 (AdC7), Vaccinia virus (VV), and DNA given by electroporation (DNA/EP), all expressing Simian immunodeficiency virus group specific antigen/transactivator of transcription (SIVmac239Gag/Tat). Five groups of six rhesus macaques (RMs) each were vaccinated with DNA/EP-AdC6-AdC7, VV-AdC6-AdC7, DNA/-EP-VV-AdC6, DNA/EP-VV-AdC7, or AdHu5-AdHu5-AdHu5 and were challenged repeatedly with low-dose intrarectal SIVmac239. Upon challenge, there were no significant differences among study groups in terms of virus acquisition or viral load after infection. When taken together, the immunization regimens did not protect against SIV acquisition compared with controls but did result in an ∼1.6-log decline in set-point viremia. Although all immunized RMs had detectable SIV-specific CD8(+) T cells in blood and rectal mucosa, we found no correlation between the number or function of these SIV-specific CD8(+) T cells and protection against SIV acquisition. Interestingly, RMs experiencing breakthrough infection showed significantly higher prechallenge levels of CD4(+)C-C chemokine receptor type 5 (CCR5)(+)HLA-DR(+) T cells in the rectal biopsies (RB) than animals that remained uninfected. In addition, among the infected RMs, the percentage of CD4(+)CCR5(+)Ki-67(+) T cells in RBs prechallenge correlated with higher early viremia. Overall, these data suggest that the levels of activated CD4(+)CCR5(+) target T cells in the rectal mucosa may predict the risk of SIV acquisition in RMs vaccinated with vectors that express SIVGag/Tat.
    Proceedings of the National Academy of Sciences 12/2014; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An effective human immunodeficiency virus type 1 (HIV-1) vaccine is expected to have the greatest impact on HIV-1 spread and remains a global scientific priority. Only one candidate vaccine has significantly reduced HIV-1 acquisition, yet at a limited efficacy of 31%, and none have delayed disease progression in vaccinated individuals. Thus, the challenge remains to develop HIV-1 immunogens that will elicit protective immunity. A combination of two independent approaches - namely the elicitation of broadly neutralising antibodies (bNAb) to prevent or reduce acquisition of infection and stimulation of effective cytotoxic T lymphocyte (CTL) responses to slow disease progression in breakthrough infections (recent evidence suggests that CTLs could also block HIV-1 from establishing persistent infection) ¿ is the current ideal. The purpose of this review is to summarise strategies and progress in the design and testing of HIV-1 immunogens to elicit bNAb and protective CTL immune responses. Recent advances in mimicking the functional native envelope trimer structure and in designing structurally-stabilised bNAb epitope forms to drive development of germline precursors to mature bNAb are highlighted. Systematic or computational approaches to T cell immunogen design aimed at covering viral diversity, increasing the breadth of immune responses and/or reducing viable viral escape are discussed. We also discuss a recent novel vaccine vector approach shown to induce extremely broad and persistent T cell responses that could clear highly pathogenic simian immunodeficiency virus (SIV) early after infection in the monkey model. While in vitro and animal model data are promising, Phase II and III human clinical trials are ultimately needed to determine the efficacy of immunogen design approaches.
    Virology journal. 01/2015; 12(1):3.

Full-text (2 Sources)

Available from
Jun 6, 2014