Hansen, SG, Ford, JC, Lewis, MS, Ventura, AB, Hughes, CM, Coyne-Johnson, L et al.. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473: 523-527

Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
Nature (Impact Factor: 41.46). 05/2011; 473(7348):523-7. DOI: 10.1038/nature10003
Source: PubMed


The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.

Download full-text


Available from: Scott G Hansen,
  • Source
    • "Finally this construct showed interesting properties with ability to mimics the early stages of natural infection of primate lentivirus and to generate in vivo additional sources of antigens. Those extra sources of antigens will be presented by APCs to lymphocytes T and B cells and should help to improve greatly the antigen-specific immune responses similarly to those seen in LAV-immunized animals and Nef-defective HIV-1-infected LTNP individuals that efficiently control their infections [18] [60] [83]. This promising data promoted initiation of immunogenicity studies in cynomologus macaques a more appropriate model for HIV-1 vaccine studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Novel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN(-)" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pol gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN(-) DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/β2 mice showed a substantial increase of IFN-γ-ELISPOT in splenocytes compared to the former replication and integration defective Δ4SHIV-KU2 DNA vaccine. Copyright © 2015. Published by Elsevier Ltd.
    Vaccine 03/2015; 33(19). DOI:10.1016/j.vaccine.2015.03.021 · 3.62 Impact Factor
  • Source
    • "Cell-Associated Viral RNA and DNA A hybrid real-time/digital PCR format and analysis approach, previously described (Hansen et al., 2011), was applied for determination of cell-associated viral loads in isolated PBMCs. Quantitative hybrid real-time/digital nested PCR were performed as previously described (Hansen et al., 2011). A total of 12 replicates of each DNA or RNA sample were tested with two of the replicates containing a spike of DNA or RNA standard, as appropriate, to monitor assay performance and to guide retest requirements. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge.
    Cell Host & Microbe 09/2014; 16(3):412-418. DOI:10.1016/j.chom.2014.08.003 · 12.33 Impact Factor
  • Source
    • "Control of HIV-1 by vaccines that stimulate CTLs. Effect of various T cell-stimulating vaccines (key) on viral load over time (with infection on day 0) during natural infection with HIV or SIV, showing the decrease in viral load achieved without a vaccine (none), by CTL responses [partial control; as in Ref. (92), for example], by the RhCMV vaccine (slow eradication) (60, 61) and by a hypothetical vaccine that targets the virus at the site of infection (rapid eradication). Reproduced with permission from Ref. (61). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many attempts have been made or are ongoing for HIV prevention and HIV cure. Many successes are in the list, particularly for HIV drugs, recently proposed also for prevention. However, no eradication of infection has been achieved so far with any drug. Further, a residual immune dysregulation associated to chronic immune activation and incomplete restoration of B and T cell subsets, together with HIV DNA persistence in reservoirs, are still unmet needs of the highly active antiretroviral therapy, causing novel "non-AIDS related" diseases that account for a higher risk of death even in virologically suppressed patients. These "ART unmet needs" represent a problem, which is expected to increase by ART roll out. Further, in countries such as South Africa, where six millions of individuals are infected, ART appears unable to contain the epidemics. Regretfully, all the attempts at developing a preventative vaccine have been largely disappointing. However, recent therapeutic immunization strategies have opened new avenues for HIV treatment, which might be exploitable also for preventative vaccine approaches. For example, immunization strategies aimed at targeting key viral products responsible of virus transmission, activation, and maintenance of virus reservoirs may intensify drug efficacy and lead to a functional cure providing new perspectives also for prevention and future virus eradication strategies. However, this approach imposes new challenges to the scientific community, vaccine developers, and regulatory bodies, such as the identification of novel immunological and virological biomarkers to assess efficacy end-points, taking advantage from the natural history of infection and exploiting lessons from former trials. This review will focus first on recent advancement of therapeutic strategies, then on the progresses made in preventative approaches, discussing concepts, and problems for the way ahead for the development of vaccines for HIV treatment and prevention.
    Frontiers in Immunology 09/2014; 5:417. DOI:10.3389/fimmu.2014.00417
Show more