A Calcineurin-Independent Mechanism of Angiogenesis Inhibition by a Nonimmunosuppressive Cyclosporin A Analog

Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 05/2011; 338(2):466-75. DOI: 10.1124/jpet.111.180851
Source: PubMed

ABSTRACT Cyclosporin A (CsA) is a widely used immunosuppressant drug. Its immunosuppressive activity occurs through the inhibition of the protein phosphatase calcineurin via formation of a ternary complex with cyclophilin A (CypA). CsA also inhibits endothelial cell proliferation and angiogenesis. This has been thought to occur through calcineurin inhibition as well. However, CsA is also a potent inhibitor of cyclophilins, a class of prolyl isomerases. Because calcineurin inhibition requires binding, and therefore inhibition of CypA, the relative contributions of calcineurin and cyclophilin inhibition in antiangiogenesis have not been addressed. We have taken a chemical biology approach to explore this question by dissociating the two activities of CsA at the molecular level. We have identified a nonimmunosuppressive analog of CsA that does not inhibit calcineurin but maintains inhibition of endothelial cell proliferation and in vivo angiogenesis. The same analog also maintains inhibition of all cyclophilin isoforms tested. We also show that a second, structurally distinct, cyclophilin inhibitor is sufficient to block endothelial cell proliferation. These results suggest that the inhibition of cyclophilins may play a larger role in the antiangiogenic activity of CsA than previously believed, and that cyclophilins may be potential antiangiogenic drug targets.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms controlling the switch between the pro-angiogenic and pro-inflammatory states of endothelial cells are still poorly understood. In this paper, we show that: (a) COX-2 expression induced by VEGF-A is NFAT2-dependent; and (b) the integrin profile in endothelial cells induced by the pro-angiogenic VEGF-A is distinct from that brought on by the inflammatory cytokine TNF-α. Two groups of integrin subunits specifically upregulated over time by both cytokines were identified using RT-PCR and Western Immunoblotting. The first group included α4, α5, α6, and β5 subunits that were upregulated by VEGF-A; the second group consisted of αV and β3 induced by TNF-α. Both cytokines significantly enhanced the expression of β1 and modulated α2 mRNA. In contrast to TNF-α, VEGF-A induction of integrin subunits depended on the activation of the calcineurin/NFAT pathway. Both calcineurin inhibitors (cyclosporineA and 11 R-VIVIT) and downregulation of NFAT2 with specific siRNA decreased induction of integrin subunits. This process of induction could be increased by upregulation of NFAT2 by pBJ5-NFAT2 transfection. This suggests that NFAT2 mediates VEGF-induced upregulation of integrin subunit synthesis by providing a constant supply of newly synthesized “refreshed” mature integrin receptors, particularly α2β1, α5β1, α4β1, α6β1 and αVβ5, which are involved at different stages of angiogenesis.
    Experimental Cell Research 06/2014; DOI:10.1016/j.yexcr.2014.03.008 · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and vascular function in zebrafish embryos.
    PLoS ONE 10(3):e0119279. DOI:10.1371/journal.pone.0119279 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporine A (CsA), a widely used immunosuppressant shows cytotoxic effects by either inducing apoptosis or redirecting the cell towards non apoptotic cell death. However, there still remains a lacuna in understanding the mechanism of CsA induced non apoptotic cell death. In the present study we investigated calcineurin dependent or independent cytotoxic effects of CsA, a calcineurin inhibitor in cervical cancerous SiHa cells. Decreased cell viability and massive cytoplasmic vacuolations were observed in CsA treated SiHa cells, having increased calcineurin activity. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR), accompanied by decrease in cyclophilin B (ER resident PPIase), preceded formation of the vacuoles. These vacuoles stained positive for many ER resident markers confirming their ER origin; but absence of autophagosomal marker, LC3II, ruled out autophagy. Extensively vacuolated cells eventually undergo cell death which lacked the typical apoptotic features, but showed significant decrease in AIP (ALG2 interacting protein) as seen in paraptosis. ER-vacuolation was prevented by cycloheximide and salubrinal thereby indicating requirement of active protein synthesis. Inhibiting calcineurin activity by either Tacrolimus (FK506) or by knockdown of calcineurin B subunit did not result in either ER-stress or cellular vacuolation. However, knockdown of cyclophilin B by siRNA resulted in increased expression of Bip and IRE1α, together with cytoplasmic vacuolation. In conclusion, we report persistent ER stress due to cyclophilin B inhibition in CsA treated cervical cancer cells causes cellular vacuolation which culminates in a non-apoptotic cell death response similar to paraptosis. Additionally, the paraptotic effects of CsA are independent of calcineurin inhibition.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 07/2014; 1843(11). DOI:10.1016/j.bbamcr.2014.06.020 · 5.30 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014