Translational Bioinformatics: Linking Knowledge Across Biological and Clinical Realms

Center for Clinical and Translational Science, University of Vermont, Burlington, Vermont 05405, USA.
Journal of the American Medical Informatics Association (Impact Factor: 3.5). 07/2011; 18(4):354-7. DOI: 10.1136/amiajnl-2011-000245
Source: PubMed


Nearly a decade since the completion of the first draft of the human genome, the biomedical community is positioned to usher in a new era of scientific inquiry that links fundamental biological insights with clinical knowledge. Accordingly, holistic approaches are needed to develop and assess hypotheses that incorporate genotypic, phenotypic, and environmental knowledge. This perspective presents translational bioinformatics as a discipline that builds on the successes of bioinformatics and health informatics for the study of complex diseases. The early successes of translational bioinformatics are indicative of the potential to achieve the promise of the Human Genome Project for gaining deeper insights to the genetic underpinnings of disease and progress toward the development of a new generation of therapies.

Download full-text


Available from: Peter Tarczy-Hornoch, Apr 14, 2015
  • Source
    • "Infrastructure tools such as i2b2 and SHARPn have made searching, summarizing, and retrieving data from cohorts captured by the EHR more feasible [10] [11]. These developments have supported a growing body of work that utilize EHR data in identifying patient cohorts with specific diseases and conducting large population studies to mine associations between gene variants and clinical phenotypes [12] [13] [14]. Nevertheless, fulfilling the promise of precision medicine necessitates not only the ability to aggregate and mine information from multiple clinical data sources, but also novel approaches to obtain detailed characterizations of observations that provide sufficient context for studying the evolution of a patient's condition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The electronic health record (EHR) contains a diverse set of clinical observations that are captured as part of routine care, but the incomplete, inconsistent, and sometimes incorrect nature of clinical data poses significant impediments for its secondary use in retrospective studies or comparative effectiveness research. In this work, we describe an ontology-driven approach for extracting and analyzing data from the patient record in a longitudinal and continuous manner. We demonstrate how the ontology helps enforce consistent data representation, integrates phenotypes generated through analyses of available clinical data sources, and facilitates subsequent studies to identify clinical predictors for an outcome of interest. Development and evaluation of our approach are described in the context of studying factors that influence intracranial aneurysm (ICA) growth and rupture. We report our experiences in capturing information on 78 individuals with a total of 120 aneurysms. Two example applications related to assessing the relationship between aneurysm size, growth, gene expression modules, and rupture are described. Our work highlights the challenges with respect to data quality, workflow, and analysis of data and its implications towards a learning health system paradigm. Copyright © 2015. Published by Elsevier Inc.
    Journal of Biomedical Informatics 03/2015; 55. DOI:10.1016/j.jbi.2015.03.008 · 2.19 Impact Factor
  • Source
    • "More specifically, CBI is aimed at providing methods and tools to support two different decision-makers. On the one hand, it should assist clinicians in dealing with clinical genomics (biomarker discovery), genomic medicine (identification of genotype/phenotype correlations), pharmacogenomics and genetic epidemiology at the point of care (see [3] for a detailed discussion); on the other hand, it must support researchers in the proper reuse of clinical data for research purposes [4]. For this reason, together with bioinformatics problems, related to the management, analysis and integration of "-omics" data, CBI needs to deal with the proper definition of clinical decision-support strategies, an area deeply studied in the context of medical informatics and artificial intelligence in medicine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Network Tools and Applications in Biology (NETTAB) Workshops are a series of meetings focused on the most promising and innovative ICT tools and to their usefulness in Bioinformatics. The NETTAB 2011 workshop, held in Pavia, Italy, in October 2011 was aimed at presenting some of the most relevant methods, tools and infrastructures that are nowadays available for Clinical Bioinformatics (CBI), the research field that deals with clinical applications of bioinformatics. In this editorial, the viewpoints and opinions of three world CBI leaders, who have been invited to participate in a panel discussion of the NETTAB workshop on the next challenges and future opportunities of this field, are reported. These include the development of data warehouses and ICT infrastructures for data sharing, the definition of standards for sharing phenotypic data and the implementation of novel tools to implement efficient search computing solutions. Some of the most important design features of a CBI-ICT infrastructure are presented, including data warehousing, modularity and flexibility, open-source development, semantic interoperability, integrated search and retrieval of -omics information. Clinical Bioinformatics goals are ambitious. Many factors, including the availability of high-throughput "-omics" technologies and equipment, the widespread availability of clinical data warehouses and the noteworthy increase in data storage and computational power of the most recent ICT systems, justify research and efforts in this domain, which promises to be a crucial leveraging factor for biomedical research.
    BMC Bioinformatics 09/2012; 13 Suppl 14(Suppl 14):S1. DOI:10.1186/1471-2105-13-S14-S1 · 2.58 Impact Factor
  • Source
    • "There was a special section focused on CRI papers in the December 2011 supplement issue. Much of the increase can be attributed to publications from awardees of the CTSA, since publication rate is related to funding.38 JAMIA publications acknowledging CTSA funding rose from three in 200939–41 to four in 201014 42–44 and 15 in 2011.15 17 19 36 45–55 Some of the articles were not exclusively focused on CRI, but were directly related, covering many different topics that are highly relevant to CRI: data models and terminologies,27 56–68 natural language processing (NLP),16 50 61 69–99 surveillance systems,48 65 80 100–110 and privacy technology and policy.33 111–117 This 2012 CRI supplement adds 18 new publications to this growing field. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical research informatics is the rapidly evolving sub-discipline within biomedical informatics that focuses on developing new informatics theories, tools, and solutions to accelerate the full translational continuum: basic research to clinical trials (T1), clinical trials to academic health center practice (T2), diffusion and implementation to community practice (T3), and 'real world' outcomes (T4). We present a conceptual model based on an informatics-enabled clinical research workflow, integration across heterogeneous data sources, and core informatics tools and platforms. We use this conceptual model to highlight 18 new articles in the JAMIA special issue on clinical research informatics.
    Journal of the American Medical Informatics Association 04/2012; 19(e1):e36-e42. DOI:10.1136/amiajnl-2012-000968 · 3.50 Impact Factor
Show more