Article

Echinococcosis in sub-Saharan Africa: emerging complexity.

Parasitology Unit, University of Hohenheim, 70599 Stuttgart, Germany.
Veterinary Parasitology (Impact Factor: 2.38). 04/2011; 181(1):43-7. DOI: 10.1016/j.vetpar.2011.04.022
Source: PubMed

ABSTRACT Cystic echinococcosis occurs in most regions of sub-Saharan Africa, but the frequency of this zoonosis differs considerably among and within countries. Especially human cases seem to be focally distributed. A number of environmental and behavioural factors partially explain this pattern, i.e. density of livestock, presence of dogs, uncontrolled slaughter, and hygiene. In addition, the various taxa of Echinococcus spp. are known to differ considerably in infectivity to different host species including humans. Genetic characterizations of isolates, which are necessary to evaluate the impact of this factor - so far done in only a few countries - indicate that the diversity of Echinococcus spp. in Sub-Saharan Africa is greater than on any other continent. The very incomplete data which are available show that sympatrical taxa may infect different hosts, others may be geographically restricted, some life cycles involve livestock, others wild animals. Possible implications of this complexity for public health, livestock economy and conservation are briefly discussed.

0 Bookmarks
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Research on cystic echinococcosis (CE) has a long history in Kenya, but has mainly concentrated on two discrete areas, Turkana and Maasailand, which are known to be foci of human CE in Africa. Here, we report on a survey for CE in livestock from central to northeastern Kenya, from where no previous data are available. A total of 7,831 livestock carcasses were surveyed. CE prevalence was 1.92 % in cattle (n = 4,595), 6.94 % in camels (n = 216), 0.37 % in goats (n = 2,955) and 4.62 % in sheep (n = 65). Identification of the parasite was done using an RFLP-PCR of the mitochondrial nad1 gene, which had been validated before against the various Echinococcus taxa currently recognized as distinct species. From a total of 284 recovered cysts, 258 could be identified as Echinococcus granulosus sensu stricto (n = 160), E. ortleppi (n = 51) and E. canadensis (n = 47) by RFLP-PCR of nad1. In cattle, fertile cysts occurred mostly in the lungs and belonged to E. ortleppi (31 of 54), while the vast majority were sterile or calcified cysts of E. granulosus s.s.. Most fertile cysts in camels belonged to E. canadensis (33 of 37); sterile or calcified cysts were rare. Goats harboured fertile cysts of E. ortleppi (n = 3)-which is the first record in that host species-and E. canadensis (n = 1), while all cysts of E. granulosus were sterile. Only sterile cysts were found in the three examined sheep. Typically, all cysts in animals with multiple infections belonged to the same species, while mixed infections were rare. Our data indicate that the epidemiological situation in central to northeastern Kenya is clearly different from the well-studied pastoral regions of Turkana and Maasailand, and the apparently low number of human CE cases correlates with the infrequent occurrence of E. granulosus s.s.
    Parasitology research. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cystic echinococcosis (CE) is a globally distributed cestode zoonosis that causes hepatic cysts. Although Echinococcus granulosus sensu stricto (s.s.) is the major causative agent of CE worldwide, recent molecular epidemiological studies have revealed that E. canadensis is common in countries where camels are present. One such country is Mongolia.
    PLoS neglected tropical diseases. 06/2014; 8(6):e2937.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the presence of Echinococcus spp. in wild mammals of Kenya, 832 faecal samples from wild carnivores (lions, leopards, spotted hyenas, wild dogs and silver-backed jackals) were collected in six different conservation areas of Kenya (Meru, Nairobi, Tsavo West and Tsavo East National Parks, Samburu and Masai Mara National Reserves). Taeniid eggs were found in 120 samples (14.4%). In total, 1160 eggs were isolated and further analyzed using RFLP-PCR of the nad1 gene and sequencing. In 38 of these samples eggs of Echinococcus spp. were identified as either E. felidis (n=27) or E. granulosus sensu stricto (n=12); one sample contained eggs from both taxa. E. felidis was found in faeces from lions (n=20) and hyenas (n=5), E. granulosus in faeces from lions (n=8), leopards (n=1) and hyenas (n=3). The host species for two samples containing E. felidis could not be identified with certainty. As the majority of isolated eggs could not be analysed with the methods used (no amplification), we do not attempt to give estimates of faecal prevalences. Both taxa of Echinococcus were found in all conservation areas except Meru (only E. felidis) and Tsavo West (only E. granulosus). Host species identification for environmental faecal samples, based on field signs, was found to be unreliable. All samples with taeniid eggs were subjected to a confirmatory host species RLFP-PCR of the cytochrome B gene. 60% had been correctly identified in the field. Frequently, hyena faeces were mistaken for lion and vice versa, and none of the samples from jackals and wild dogs could be confirmed in the tested sub-sample. This is the first study on the distribution of Echinococcus spp. in Kenyan wildlife. The presence of E. felidis is confirmed for lions and newly reported for spotted hyenas. Lions and hyenas are newly recognized hosts for E. granulosus s.s., while the role of leopards remains uncertain. These data provide the basis for further studies on the lifecycles and the possible link between wild and domestic cycles of cystic echinococcosis in eastern Africa.
    Parasitology International 04/2014; · 2.30 Impact Factor