Article

Modeling initiation of Ewing sarcoma in human neural crest cells.

Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America.
PLoS ONE (Impact Factor: 3.53). 04/2011; 6(4):e19305. DOI: 10.1371/journal.pone.0019305
Source: PubMed

ABSTRACT Ewing sarcoma family tumors (ESFT) are aggressive bone and soft tissue tumors that express EWS-ETS fusion genes as driver mutations. Although the histogenesis of ESFT is controversial, mesenchymal (MSC) and/or neural crest (NCSC) stem cells have been implicated as cells of origin. For the current study we evaluated the consequences of EWS-FLI1 expression in human embryonic stem cell-derived NCSC (hNCSC). Ectopic expression of EWS-FLI1 in undifferentiated hNCSC and their neuro-mesenchymal stem cell (hNC-MSC) progeny was readily tolerated and led to altered expression of both well established as well as novel EWS-FLI1 target genes. Importantly, whole genome expression profiling studies revealed that the molecular signature of established ESFT is more similar to hNCSC than any other normal tissue, including MSC, indicating that maintenance or reactivation of the NCSC program is a feature of ESFT pathogenesis. Consistent with this hypothesis, EWS-FLI1 induced hNCSC genes as well as the polycomb proteins BMI-1 and EZH2 in hNC-MSC. In addition, up-regulation of BMI-1 was associated with avoidance of cellular senescence and reversible silencing of p16. Together these studies confirm that, unlike terminally differentiated cells but consistent with bone marrow-derived MSC, NCSC tolerate expression of EWS-FLI1 and ectopic expression of the oncogene initiates transition to an ESFT-like state. In addition, to our knowledge this is the first demonstration that EWS-FLI1-mediated induction of BMI-1 and epigenetic silencing of p16 might be critical early initiating events in ESFT tumorigenesis.

0 Bookmarks
 · 
166 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Ewing sarcoma (ES) represents the paradigm of an aberrant E-twenty-six (ETS) oncogene-driven cancer. It is characterized by specific rearrangements of one of five alternative ETS family member genes with EWSR1. There is experimental evidence that the resulting fusion proteins act as aberrant transcription factors driving ES pathogenesis. The transcriptional gene regulatory network driven by EWS-ETS proteins provides the oncogenic engine to the tumor. Therefore, EWS-ETS and their downstream machinery are considered ideal tumor-specific therapeutic targets. Areas covered: This review critically discusses the literature on the development of EWS-ETS-directed ES targeting strategies considering current knowledge of EWS-ETS biology and cellular context. It focuses on determinants of EWS-FLI1 function with an emphasis on interactions with chromatin structure. We speculate about the relevance of poorly investigated aspects in ES research such as chromatin remodeling and DNA damage repair for the development of targeted therapies. Expert opinion: This review questions the specificity of signature-based screening approaches to the identification of EWS-FLI1-targeted compounds. It challenges the view that targeting the downstream gene regulatory network carries potential for therapeutic breakthroughs because of resistance-inducing network rewiring. Instead, we propose to combine targeting of the fusion protein with epigenetic therapy as a future treatment strategy in ES.
    Expert Opinion on Therapeutic Targets 08/2014; 18(11):1-14. DOI:10.1517/14728222.2014.947963 · 4.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell cycle progression is orchestrated by E2F factors. We previously reported that in ETS-driven cancers of the bone and prostate, activating E2F3 cooperates with ETS on target promoters. The mechanism of target co-regulation remained unknown. Using RNAi and time-resolved chromatin-immunoprecipitation in Ewing sarcoma we report replacement of E2F3/pRB by constitutively expressed repressive E2F4/p130 complexes on target genes upon EWS-FLI1 modulation. Using mathematical modeling we interrogated four alternative explanatory models for the observed EWS-FLI1/E2F3 cooperation based on longitudinal E2F target and regulating transcription factor expression analysis. Bayesian model selection revealed the formation of a synergistic complex between EWS-FLI1 and E2F3 as the by far most likely mechanism explaining the observed kinetics of E2F target induction. Consequently we propose that aberrant cell cycle activation in Ewing sarcoma is due to the de-repression of E2F targets as a consequence of transcriptional induction and physical recruitment of E2F3 by EWS-FLI1 replacing E2F4 on their target promoters. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 02/2015; DOI:10.1093/nar/gkv123 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundA select number of relatively rare metastatic malignancies comprising trophoblast tumours, the rare childhood cancers, germ cells tumours, leukemias and lymphomas have been routinely curable with chemotherapy for more than 30 years. However for the more common metastatic malignancies chemotherapy treatment frequently brings clinical benefits but cure is not expected. Clinically this clear divide in outcome between the tumour types can appear at odds with the classical theories of chemotherapy sensitivity and resistance that include rates of proliferation, genetic development of drug resistance and drug efflux pumps. We have looked at the clinical characteristics of the chemotherapy curable malignancies to see if they have any common factors that could explain this extreme differential sensitivity to chemotherapy.DiscussionIt has previously been noted how the onset of malignancy can leave malignant cells fixed with some key cellular functions remaining frozen at the point in development at which malignant transformation occurred. In the chemotherapy curable malignancies the onset of malignancy is in each case closely linked to one of the unique genetic events of; nuclear fusion for molar pregnancies, choriocarcinoma and placental site trophoblast tumours, gastrulation for the childhood cancers, meiosis for testicular cancer and ovarian germ cell tumours and VDJ rearrangement and somatic hypermutation for acute leukemia and lymphoma. These processes are all linked to natural periods of supra-physiological apoptotic potential and it appears that the malignant cells arising from them usually retain this heightened sensitivity to DNA damage. To investigate this hypothesis we have examined the natural history of the healthy cells during these processes and the chemotherapy sensitivity of malignancies arising before, during and after the events.SummaryTo add to the debate on chemotherapy resistance and sensitivity, we would argue that malignancies can be functionally divided into 2 groups. Firstly those that arise in cells with naturally heightened apoptotic potential as a result of their proximity to the unique genetic events, where the malignancies are generally chemotherapy curable and then the more common malignancies that arise in cells of standard apoptotic potential that are not curable with classical cytotoxic drugs.
    BMC Cancer 01/2015; 15(1):11. DOI:10.1186/s12885-015-1006-6 · 3.32 Impact Factor

Full-text (2 Sources)

Download
101 Downloads
Available from
Jun 1, 2014