HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab.

Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Clinical Cancer Research (Impact Factor: 8.19). 05/2011; 17(15):5132-9. DOI: 10.1158/1078-0432.CCR-11-0072
Source: PubMed

ABSTRACT HSP90 is a chaperone protein required for the stability of a variety of client proteins. 17-Demethoxygeldanamycin (17-AAG) is a natural product that binds to HSP90 and inhibits its activity, thereby inducing the degradation of these clients. In preclinical studies, HER2 is one of the most sensitive known client proteins of 17-AAG. On the basis of these data and activity in a phase I study, we conducted a phase II study of 17-AAG (tanespimycin) with trastuzumab in advanced trastuzumab-refractory HER2-positive breast cancer.
We enrolled patients with metastatic HER2(+) breast cancer whose disease had previously progressed on trastuzumab. All patients received weekly treatment with tanespimycin at 450 mg/m(2) intravenously and trastuzumab at a conventional dose. Therapy was continued until disease progression. The primary endpoint was response rate by Response Evaluation Criteria in Solid Tumors (RECIST) criteria.
Thirty-one patients were enrolled with a median age of 53 years and a median Karnofsky performance status (KPS) of 90%. The most common toxicities, largely grade 1, were diarrhea, fatigue, nausea, and headache. The overall response rate was 22%, the clinical benefit rate [complete response + partial response + stable disease] was 59%, the median progression-free survival was 6 months (95% CI: 4-9), and the median overall survival was 17 months (95% CI: 16-28).
This is the first phase II study to definitively show RECIST-defined responses for 17-AAG in solid tumors. Tanespimycin plus trastuzumab has significant anticancer activity in patients with HER2-positive, metastatic breast cancer previously progressing on trastuzumab. Further research exploring this therapeutic interaction and the activity of HSP90 inhibitors is clearly warranted.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Ric-8A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary time window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because the G protein α subunits are mis-folded and degraded rapidly. Ric-8 proteins also act as Gα subunit guanine nucleotide exchange factors (GEFs) in vitro. It is not clear whether Ric-8 GEF-mediated activation of G proteins produces Gα-GTP in cells to regulate G protein-dependent effector enzymes. Ric-8 GEF activity could be a restricted in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action, but obligate for receptors. It remains an open question of whether Ric-8 has dual function in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 proteins do have profound positive influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets, in which pharmacological inhibition of the Ric-8:Gα subunit interface could serve to attenuate the effects of disease causing G proteins (constitutively active mutants) and/or hyperactive GPCR signaling. This mini-review will chronicle understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for therapeutic development.
    Molecular pharmacology 10/2014; · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer.
    PLoS ONE 01/2014; 9(12):e114506. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background:We showed previously that breast carcinoma amplified sequence 2 (BCAS2) functions as a negative regulator of p53. We also found that BCAS2 is a potential AR-associated protein. AR is essential for the growth and survival of prostate carcinoma. Therefore we characterised the correlation between BCAS2 and AR.Methods:Protein interactions were examined by GST pull-down assay and co-immunoprecipitation. Clinical prostate cancer (PCa) specimens were evaluated by immunohistochemical assay. AR transcriptional activity and LNCaP cell growth were assessed by luciferase assay and MTT assay, respectively.Results:BCAS2 expression was significantly increased in PCa. BCAS2 stabilised AR protein through both hormone-dependent and -independent manners. There are at least two mechanisms for BCAS2-mediated AR protein upregulation: One is p53-dependent. The p53 is suppressed by BCAS2 that results in increasing AR mRNA and protein expression. The other is via p53-independent inhibition of proteasome degradation. As BCAS2 can form a complex with AR and HSP90, it may function with HSP90 to stabilise AR protein from being degraded by proteasome.Conclusions:In this study, we show that BCAS2 is a novel AR-interacting protein and characterise the correlation between BCAS2 and PCa. Thus we propose that BCAS2 could be a diagnostic marker and therapeutic target for PCa.British Journal of Cancer advance online publication, 2 December 2014; doi:10.1038/bjc.2014.603
    British Journal of Cancer 12/2014; · 4.82 Impact Factor