HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab.

Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
Clinical Cancer Research (Impact Factor: 7.84). 05/2011; 17(15):5132-9. DOI: 10.1158/1078-0432.CCR-11-0072
Source: PubMed

ABSTRACT HSP90 is a chaperone protein required for the stability of a variety of client proteins. 17-Demethoxygeldanamycin (17-AAG) is a natural product that binds to HSP90 and inhibits its activity, thereby inducing the degradation of these clients. In preclinical studies, HER2 is one of the most sensitive known client proteins of 17-AAG. On the basis of these data and activity in a phase I study, we conducted a phase II study of 17-AAG (tanespimycin) with trastuzumab in advanced trastuzumab-refractory HER2-positive breast cancer.
We enrolled patients with metastatic HER2(+) breast cancer whose disease had previously progressed on trastuzumab. All patients received weekly treatment with tanespimycin at 450 mg/m(2) intravenously and trastuzumab at a conventional dose. Therapy was continued until disease progression. The primary endpoint was response rate by Response Evaluation Criteria in Solid Tumors (RECIST) criteria.
Thirty-one patients were enrolled with a median age of 53 years and a median Karnofsky performance status (KPS) of 90%. The most common toxicities, largely grade 1, were diarrhea, fatigue, nausea, and headache. The overall response rate was 22%, the clinical benefit rate [complete response + partial response + stable disease] was 59%, the median progression-free survival was 6 months (95% CI: 4-9), and the median overall survival was 17 months (95% CI: 16-28).
This is the first phase II study to definitively show RECIST-defined responses for 17-AAG in solid tumors. Tanespimycin plus trastuzumab has significant anticancer activity in patients with HER2-positive, metastatic breast cancer previously progressing on trastuzumab. Further research exploring this therapeutic interaction and the activity of HSP90 inhibitors is clearly warranted.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The EGFR has been associated with the pathogenesis and progression of breast cancer. Treatment based on an EGFR target is emerging as a promising option, especially in combination with conventional therapies. Unfortunately, there are no validated predictor biomarkers, and combinatorial treatments are meeting new resistance. Areas covered: The purpose of this review is to summarize the existing treatments and the current research based on targeting the EGFR pathway. Expert opinion: The existing EGFR treatments in breast cancer have shown limited benefit. The combination of the monoclonal antibody cetuximab and platinum salts achieves a 15 - 20% response rate. The effectiveness of tyrosine kinase inhibitors is not completely clear, showing modest or no benefits. Gefitinib treatment has offered some promising results in estrogen receptor + breast cancer. However, it has not been identified as a predictive factor for the appropriate selection of patients. Radioimmunotherapy with anti-EGFR radiolabeled antibodies is a promising strategy in BRCA-mutated breast cancer, but it still requires clinical confirmation. Nevertheless, the crosstalk between pathways frequently leads to treatment resistance. Current research is focused on increasing knowledge about the mechanisms of response and the discovery of predictive markers. Targeting several pathways simultaneously and a correct selection of patients seem essential.
    Expert Opinion on Emerging Drugs 05/2014; · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Twenty-six 17-phenylethylamine-modified geldanamycin derivatives were synthesized and evaluated for anti-proliferation activity in human cancer cell lines, LNCaP and MDA-MB-231. Five derivatives (2j, 2q, 2v, 2x and 2y) showed excellent in vitro antitumor activities. Among them, compound 2y was the most potent lead, with IC50 values of 0.27 ± 0.11 and 0.86 ± 0.23 μM for LNCaP and MDA-MB-231, respectively. In particular, compound 2y was more active than its precursor geldanamycin against LNCap cells. Liver injury test in mice demonstrated that 2y group showed no significant difference for serum alanine aminotransferase (ALT) activity versus vehicle control, indicating that 2y was a promising antitumor candidate. Preliminary structure-activity relationship (SAR) and molecular dynamics (MD) simulations of this new series of geldanamycin derivatives were also investigated, suggesting a theoretical model of 17-phenylethylaminegeldanamycins binding to Hsp90. This article is protected by copyright. All rights reserved.
    Chemical Biology &amp Drug Design 06/2014; · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: What is the effect of beta-O-linked glycosylation (O-GlcNAcylation) on specific proteins in the cumulus-oocyte complex (COC) under hyperglycaemic conditions? Heat shock protein 90 (HSP90) was identified and confirmed as being O-GlcNAcylated in mouse COCs under hyperglycaemic conditions (modelled using glucosamine), causing detrimental outcomes for embryo development. O-GlcNAcylation of proteins occurs as a result of increased activity of the hexosamine biosynthesis pathway, which provides substrates for cumulus matrix production during COC maturation, and also for O-GlcNAcylation. COCs matured under hyperglycaemic conditions have decreased developmental competence, mediated at least in part through the mechanism of increased O-GlcNAcylation. This study was designed to examine the effect of hyperglycaemic conditions (using the hyperglycaemic mimetic, glucosamine) on O-GlcNAc levels in the mouse COC, and furthermore to identify potential candidate proteins which are targets of this modification, and their roles in oocyte maturation. COCs from 21-day-old superovulated CBA × C57BL6 F1 hybrid female mice were matured in vitro (IVM). Levels of O-GlcNAcylated proteins, HSP90 and O-GlcNAc transferase (OGT, the enzyme responsible for O-GlcNAcylation) in COCs were measured using western blot, and localization observed using immunocytochemistry. For glycosylated HSP90 levels, and to test OGT-HSP90 interaction, immunoprecipitation was performed prior to western blotting. Embryo development was assessed using in vitro fertilization and embryo culture post-maturation. Addition of the hyperglycaemic mimetic glucosamine to IVM medium for mouse COCs increased detectable O-GlcNAcylated protein levels (by western blot and immunocytochemistry), and this effect was reversed using an OGT inhibitor (P < 0.05). HSP90 was identified as a target of O-GlcNAcylation in the COC, and inhibition of HSP90 during IVM reversed glucosamine-induced decreases in oocyte developmental competence (P < 0.05). We also demonstrated the novel finding of an association between HSP90 and OGT in COCs, suggesting a possible client-chaperone relationship. In vitro maturation of COCs was used so that treatment time could be limited to the 17 h of maturation prior to ovulation. Additionally, glucosamine, a hyperglycaemic mimetic, was used because it specifically activates the hexosamine pathway which provides the O-GlcNAc moieties. The results in this study should be confirmed using in vivo models of hyperglycaemia and different HSP90 inhibitors. This study leads to a new understanding of how diabetes influences oocyte competence and provides insight into possible therapeutic interventions based on inhibiting HSP90 to improve oocyte quality. This work was supported by a programme grant from the National Health and Medical Research Council, Australia, ID 453556. J.G.T. is a recipient of funding from and a consultant to Cook Medical Pty Ltd. The other authors have no conflicts of interest to declare.
    Human Reproduction 04/2014; · 4.67 Impact Factor